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These notes correspond to a research project carried out at 

Southampton University while I was on leave from the Federal University 

of Rio de Janeiro. 

The main object of the work is the application of the direct 

boundary element method for the solution of nonlinear material problems. 

To this end, the elastic formulation of the technique is first introduced 

by considering two and three-dimensional problems employing the funda

mental solutions corresponding to the infinite and semi-infinite spaces. 

Thus, in addition to the known Kelvin and Mindlin solutions, the complete 

fundamental solution due to a unit point load within the half-plane is 

presented and its implementation discussed in detail, including the 

results of some classical examples. 

Three alternative formulations - initial strain, initial stress 

and fictitious forces - are discussed for 3-D and 2-D inelastic problems. 

The numerical implementation of the first two approaches is then presented 

for two-dimensional problems, including the half-plane fundamental 

solution. 

Different applications of the inelastic boundary element equations 

to pure elastoplastic analysis are presented. The initial strain formula

tion is implemented with the von Mises yield criterion and employs a 

simple solution technique. The initial stress implementation is more 

general and can handle four different yield criteria, with two different 

solution routines. A common feature of the alternative implementations 

is that they are all incremental - iterative processes, capable of 

performing iterations by using a single recursive expression, relating 

stresses to the plastic strains and the initial elastic solution. 

Finally, the implementation of the B.E. technique to viscoplasticity 

and creep is accomplished by using the initial stress equations in con

junction with an Euler time integration procedure. 

Several examples are presented to outline the accuracy and 

applicability of the different formulations, these involve elastoplastic, 

creep and viscoplastic problems. 
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CHAPTER 1 

INTRODUCTION AND MOTIVATION 

1.1 Introduction 

Numerical methods for the solution of problems related to 

continuum mechanics have been investigated by engineers and physical 

scientists for many years. Quite generally, such methods can be 

classified in three main categories; finite differences, finite 

elements and boundary elements. The former is probably the first 

successfully applied numerical method and is usually derived by direct 

application of a difference operator corresponding to the governing 

differential equation of the problem. This operation is carried out 

at a series of points (nodes) within the domain of the body and 

generates a narrow banded system of equations relating the value of 

the unknown function at such nodal points to the boundary conditions 

at selected points over the boundary. These equations can then be 

solved by a direct procedure in linear problems or iteratively 

for nonlinear cases. This last feature, i.e. the possibility of 

easily extending the technique to deal with geometric and material 

nonlinear problems, is a direct consequence of the simple concept 

involved in its implementation and partly justifies the great deal 

of attention that has been given to the technique [11] ' [12J. The 

method, however, possesses some drawbacks which are immediately 

apparent when problems with complicated boundary geometries are 

attempted. In addition, simplicity pays its price when relatively 

accurate solutions are desired for the technique usually requires a 

large number of nodal points to represent realistically the actual 

solution to the problem. Consequently, it is not surprising that finite 



www.manaraa.com

2 

difference methods have become superseded by more sophisticated 

techniques such as those pertaining to the finite element category. 

The finite element method [13, l4J is by far the most popular 

numerical method nowadays. The domain of the body is subdivided 

into a collection of connected subdomains, of rather simple shape, 

called finite elements. Trial functions, usually polynomials, 

are then chosen to locally approximate the actual behaviour of the 

solution. These functions are uniquely defined in terms of the approx

imated values of the solution (and possibly its derivatives) at 

certain nodal points located inside on on the boundary of each element. 

A "best fit" for the approximation is then obtained through the 

application of some weighted residual technique or variational principle 

(such as energy minimization). leading to a normally banded and 

symmetric system of equations which involves the unknown values of the 

approximated solution at the nodal points. The method is, without 

doubt, computationally more efficient than the early finite difference 

approach and during the last twenty years has reached such a stage of 

development that a very wide range of linear and nonlinear unsolved 

engineering problems are now amenable to solutions within the context 

of this powerful numerical method [15, l6J. 

There are, however, many classes of problems for which finite 

elements do not behave satisfactorily and this has led researchers to 

look for alternative techniques such as those based on integral equations. 

In these modern techniques, the governing differential equation 

of the problem, which involves the behaviour of the unknown solution 

inside and on the surface of the domain, is transformed into an integral 

equation defined over the surface. thus enabling the reduction of the 
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dimensionality of the problem by one. The surface may then be 

discretized into a number of boundary elements over which polynomial 

functions, of the type used in finite elements, are introduced to 

interpolate the values of the approximated solution between the nodal 

points. This allows for the evaluation of the relevant integrals, 

usually by some numerical process, resulting in a final system of 

equations which, although fully populated, is of much smaller size 

than the finite element counterpart. 

Methods included in the above pattern are here designated 

boundary element methods [1, 2J, for they reduce the approximation of 

the solution to the boundary by using an "element" type discretization. 

However, "boundary integral equation" methods [3, 4J is also a common 

name broadly found in the literature. 

Boundary element methods present important features that plainly 

justify the increasing popularity achieved in recent years; (i) 

reduced set of equations, (ii) simple data preparation to run a 

problem, (iii) infinite or semi-infinite problems are properly modelled, 

(iv) accurate selective calculation of internal stresses and displacements 

and (v) great resolution for stress concentration problems are some 

of the main characteristics. Such methods, themselves, can be classified 

into two groups [5J : indirect and direct. This classification, perhaps 

over simplified, helps to outline the main differences in the approaches 

most used today. 

In the indirect formulation, the integral equations are 

expressed entirely in terms of a unit singular solution of the 

differential equation, distributed over the boundary, with specific 

unknown densitites. Such density functions have no physical 

significance, but once their values have been obtained, the displacements 
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and stresses can be readily computed. Numerical algorithms based on 

this approach have been described for elastic problems by Jaswom 

and Symm [4J, Butterfield and Banerjee [18J, Watson [17J, Mendelson 

[6J and many others. 

In the direct procedure, the unknown functions appearing in the 

integral equations are the actual physical variables of the problem 

(such as tractions and boundary displacements in elasticity). The 

internal stresses and displacements are directly computed afterwards 

by using the boundary values obtained through the solution of the 

system of equations. Elastic applications of this technique have been 

described by Rizzo [19J, Cruse [20 - 22J, Lachat and Watson [23J, 

Brebbia [1, 2J, Nakaguma [25J and others. 

The key to the implementation of these methods is the adoption 

of a singular solution (fundamental solution) to the corresponding 

differential equation of the problem. Such fundamental solution, in 

elastic applications of the type described by Rizzo [19J and Cruse [20J, 

is usually the one due to Lord Kelvin (see Love [26J) and corresponds 

to a unit point load applied within the infinite medium. Alternative 

formulations, of the same type, have been presented by Nakaguma [25J 

and Cruse [27J, where fundamental solutions that satisfy certain 

special boundary conditions were used. The former applied Mindlin's 

[44J singular solution for half-space problems and the latter a 

special Green's function for cracked plates. In these references the 

advantages of using such particular fundamental solutions were pointed 

out for the corresponding specific applications. 

The present work is mainly concerned with the application of the 

direct boundary element method to nonlinear material problems. The 
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complete formulation for two and three dimensional inelastic problems 

is presented. In addition. the fundamental solution corresponding 

to a unit point load applied within the ha1f-p1ane is introduced 

and implemented together with the Kelvin solution for two dimensional 

problems involving plasticity. creep and viscop1asticity. 

The bibliography on boundary elements has grown at a rapidly 

accelerated rate during the last few years and it will be difficult 

to give credit to the many authors that have contributed to it. 

References [1 - 4J and [28 - 43J include many of the most important 

works published up to now and also indicate the present stage in 

development of the techniques. A brief historical account of the 

pUblications related to nonlinear material applications is given in 

the next Section. 

1.2 Literature Survey - Nonlinear Applications 

Although elastic (numerical) applications of integral equations 

were already known in the 1960's. it was only during the last decade 

that the first publications on nonlinear material problems appeared. 

The first publication on this subject was due to Swed10w and Cruse 

[5J in 1971. The article was concerned with the generalization of the 

strain hardening e1astop1astic constitutive equations. previously 

presented by the first author. to compressible and anisotropic 

plastic flow. and presented an extended form of Somig1iana's identity 

including plastic strain rates. In addition. the starting boundary 

integral equation for the direct boundary element formulation was first 

introduced. for three dimensional problems. but examples were not shown 

nor the integral expression for internal stresses was given. The authors. 

however. pointed out the existence of a domain integral which accounts 
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for the plastic strains contribution to the formulation. 

This early work was taken up by Riccarde11a U] in 1973, 

who implemented the von Mises yield criterion (isotropic hardening) 

for two dimensional problems using piecewise constant interpolation 

for the plastic strains. The complete integral expression for stresses 

at internal points was not presented due to the autho~'s recognition 

of a singularity in the plastic strain integral. Instead, this 

apparent difficulty was correctly avoided by first integrating 

analytically the plastic strain term and then obtaining the derivatives 

also in closed form. A direct consequence of the procedure was that 

interpolation functions other than constant could not be easily 

implemented. By using a rather cumbersome implicit solution technique, 

some examples were solved and the author concluded that, although not 

entirely successful, the results were encouraging. This work 

deserves considerable credit, not only for being the first of its kind, 

but also because it laid the numerical basis for much of the work that 

followed. Linear boundary elements, for instance, were first presented 

together with the analytical expressions for the free term. Also, 

the closed form integrals for the plastic strain term remained the 

only correct expressions available until recently. 

During the same period, Mendelson [6J presented and discussed 

different integral formulations for e1astop1astic problems; namely 

indirect, direct and a direct biharmonic formulation therein called 

semidirect approach. Partial solutions to some e1astop1astic examples 

were presented, including a trivial closed form expression for the 

torsion problem of a circular shaft and some early numerical results 

for an edge-notched beam under pure bending. The latter was solved 

by using the so-called semidirect formulation. By contrast with 
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the previous referen~es, the direct formulation was presented including 

the integral expressions for the internal stresses (two and three 

dimensional problems). Such expressions, however, were later seen 

to be incorrect due to the way in which the plastic strain term was 

considered. 

In 1975 an extension of the above work was presented by 

Mendelson and Albers [8J. In this paper the numerical results for the 

torsion problem of a bar with square cross section were presented 

within the context of the direct formulation (warping function) and 

the deformation theory of plasticity. Ideal plasticity and strain 

hardening were considered, and a comparison of results with finite 

difference solutions indicated the powerfulness of the technique. 

The paper also produced some further results for the beam problem 

presented before, but in addition to the complete solution obtained 

by the semidirect formulation, an attempt to apply the direct procedure 

was presented with inconclusive results. 

Two years later Mukherjee [9J presented a theoretical paper 

concerned with the proper care in reducing the three dimensional 

direct boundary element formulation to the plane strain case. In 

this work he partially corrected the equations presented in references 

[6, 8J and produced modified versions for the kernels of the plastic 

strain integrals. Such modifications are entirely based on the 

incompressibility of the plastic strains, consequently, cannot 

be valid for plasticity problems in which plastic dilation is allowed 

(plastic potentials type Druker-Prager or Mohr-Coulomb) to occur. 

An application of the formulation to obtain closed form solutions 

for some simple problems was also discussed in [45J by the same 

author and a co-worker. 
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Still in 1977. Chaudonneret [54J used a direct boundary element 

formulation for the viscoplastic analysis of a notched plate. In 

her study. original constitutive equations developed at ·O.N.E.R.A. 

(France) were employed and a confirmation of the results was obtained 

experimentally. Also. the integral equations presented were based 

on an "initial stress" form of the viscoplastic strains influence 

and the numerical implementaion was carried out using linear boundary 

elements and constant rectangular cells for integrating the nonlinear 

term. It is worth mentioning that Riccardella's procedure for 

obtaining the internal stresses was probably used. since the corresponding 

integral expressions presented in the paper were still not correct. 

The following year saw a major contribution towards the proper 

inelastic boundary element formulation; Bui [lOJ presented a paper 

in which he points out the appropriate concept (originally due to 

Mikhlin [33J) for the derivative of the singular integral of the 

inelastic term. Here, the three dimensional integral expressions 

are discussed and the author indicates the existence of a free term 

in the integral equation for internal stresses which was not 

considered in any of the previous publications. This free term, 

however, does not ease the numerical implementation, because the 

associated domain integral (inelastic term) still has to be evaluated 

in the principal value sense. Nevertheless, it was the very first 

time the correct integral expression was proposed. 

Recognition of the above work led Mukherjee and Kumar [48J 

to adopt the procedure previously described by Riccardella. In this 

paper they succeeded in performing time dependent inelastic analysis 

of some plane stress examples using power law creep and the recently 

developed constitutive relations due to Hart (metallic media). The 
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solution procedure employed was a predictor-corrector time integration 

scheme coupled with piecewise constant spatial interpolation for both, 

boundary unknowns and inelastic strains. 

One year after (1979), Telles and Brebbia [46J produced the 

complete boundary element formulation for three and two dimensional 

plasticity problems. The correct expressions for internal stresses 

were given, including the proper derivatives of the singular domain 

integrals. In their work, emphasis was given to the numerical 

implementation of the integral equations and a simple procedure for 

numerically computing the principal value of the plastic strain 

integrals, together with the corresponding free terms. was proposed. 

Such procedure is based on the application of a uniform plastic strain 

field to the discretized integral equations and allows for the 

implementation of higher order internal cells. This work did not show 

any solutions for· engineering examples, but the possibility of correctly 

employing higher order representation for the inelastic strains was 

demonstrated for the first time. 

As it is seen, the 1970's saw a great deal of controversy 

with respect to the correctness of the boundary element formulation. 

In the beginning of the present decade, however, the technique was 

already capable of solving many practical problems using more sophist

icated numerical implementations. As early as 1980, for instance, 

Telles and Brebbia ~49J employed the direct boundary element method 

to solve some elastoplastic problems in two dimensions (plane stress 

and plane strain). An "initial strain" form of the inelastic term 

was considered and the formulation was capable of handling incompressible 

plastic strains using the isotropic von Mises yield criterion with strain 

hardening, ideal plasticity and strain softening behaviour. The 
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numerical implementation was accomplished by using linear interpolation 

functions for both, boundary elements and internal cells. In this 

work the potentialities of boundary elements for inelastic analysis 

were highlighted by comparing the results with finite element 

solutions for the same problems. 

In another publication by the same authors [S2J, an"initia1 

stress" formulation was introduced with four different yield criteria 

(Tresca, Mises, Mohr-Coulomb and Drucker-Prager). The possibility 

of plastic dilation was therefore considered. In addition, alternative 

direct boundary element formulations were also discussed; namely 

initial strain, initial stress and fictitious tractions and body 

forces approach. Among the different applications presented is the 

geotechnical problem of a deep tunnel which clearly demonstrates 

the suitability of boundary elements for inelastic infinite medium 

problems. 

Still in 1980 a somewhat approximated boundary element 

formulation was presented by Banerjee and Cathie [SOJ. In this paper 

they correct a previous unsuccessful formulation [47J proposed by 

the first author and co-worker. The original feature presented is 

concerned with the calculation of the internal stresses; here, instead 

of using the integral expression, the ~uthors compute internal 

displacements and apply a numerical differentiation scheme of the type 

used in finite differences or finite elements. Such procedure is 

obviously less accurate, and more importantly requires extra computer 

time for the operations. The direct consequences are already apparent 

in the examples presented. An attempt to optimise the number of 

operations per iteration cycle was also discussed by Cathie [SlJ, 

but in spite of this effort it was later proved that the procedure 

is computationally inefficient [S6J. 
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Another improvement in an early formulation was presented by 

Morjaria and Mukherjee [55J. where the (already mentioned) implementation 

previously described by the second author and colleague [48J was 

made more efficient by employing linear boundary elements and an 

Euler-type time integration scheme. The inelastic term, however. was 

still spatially interpolated in constant piecewise form. In this 

publication some further examples (plane stress) are solved. 

including a plate with an elliptic cutout; comparisons with the 

previous attempt reveal substantial improvement in computer efficiency. 

In 1981 the first successful formulations employing fundamental 

solutions that satisfy particular boundary conditions are introduced. 

Telles and Brebbia [56J implement the half-plane singular solution in 

the context of the different formulations previously proposed by them. 

In this work finite and semi-infinite plasticity problems are 

solved with great resolution. and this is achieved without bound4ry 

discretization over the traction-free surface of the semi-plane. 

Another interesting implementation was presented by Morjaria 

and Mukherjee [57J where an indirect and biharmonic boundary element 

formulation is presented in conjunction with the fundamental solution 

for planar bodies with cutouts (circular and elliptic). This biharmonic 

formulation is here applied to solve one of the author's previous 

examples and also to the challenging problem of a cracked plate simulated 

by a narrow elliptic cutout. 

The above advanced implementations clearly indicate the 

advantages of adopting different fundamental solutions for the 

corresponding different types of problems. 

A further development is also presented by Telles and Brebbia 

rs8] where they introduce a viscoplastic boundary element implementation 
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which is capable of handling plasticity, creep and viscop1asticity 

in a unified approach. In this reference the Perzyna's constitutive 

model for e1astic/viscop1astic material behaviour is adopted with 

four different yield criteria. The solution routine employed is 

a simple Euler time integration scheme with time step limiting 

considerations. The examples shown illustrate the capabilities 

of boundary elements in these classes of time dependent nonlinear 

problems. 

1.3 Layout of Notes 

CHAPTER 2 gives an outline of the basic theory which is used 

thro~ghout this work. A review of the small strain theory of elasticity 

is first presented and this is followed by some basic concepts of 

plasticity, viscop1asticity and creep illustrated by the corresponding 

uniaxial behaviour. The chapter also presents the differential 

equations which govern continuum inelastic problems and introduces 

two alternative forms of representing the inelastic contribution, 

i.e., initial strain and initial stress. 

CHAPTER 3 is entirely concerned with elastic problems and the 

complete boundary element formulation using the fundamental solutions 

due to Kelvin [26J is reviewed. A formulation of the technique for 

half-plane type problems is also introduced through the adoption of 

a fundamental solution satisfying the traction-free condition over the 

surface of the semi-plane. This fundamental solution has been 

presented by Me1an [79J in terms of stresses only, hence this solution 

is first extended to compute displacements which are needed to apply 

the direct boundary element method. In addition, a correction in one 

of the original formulae by Me1an is effectuated and the complete 
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expressions for the boundary element computation of stresses at 

internal points are presented. 

The numerical implementation is discussed in detail and the 

application of the ha1f-p1ane formulation to solve some classical 

problems is included. 

CHAPTER 4 introduces the boundary element equations for inelastic 

problems. Somig1iana's identity for displacements [26] is extended 

to handle inelastic strains by following two different procedures, 

the first leads to an initial strain form and the second to an initial 

stress representation. 

A proper procedure for obtaining the integral equations for 

stresses at interior points is presented and the complete boundary 

element equations for 3-D and 2-D problems including the ha1f-p1ane 

implementation are discussed in detail. This includes three alternative 

formulations; initial strain, initial stress and fictitious tractions 

and body forces. In addition, the spatial discretization of the 

equations is introduced and a simple and efficient semi-analytical 

integration scheme is applied for the domain integrals of the inelastic 

terms. 

CHAPTER 5 is concerned with the application of the inelastic 

boundary element equations to solve plasticity problems. The yield 

condition presented in Chapter 2 is extended to general continuum 

problems and the von Mises yield criterion [60-64, 68-71J is first 

introduced in conjunction with the initial strain equations. Also, 

a solution algorithm [6~ based on these expressions is presented 

and discussed in detail, including a series of examples and comparisons 

with existing results. 
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In order to extend the range of applications, general stress-strain 

relations for post yield behaviour are introduced in incremental form. 

This is accomplished by considering four different yield criteria; 

namely [76J Tresca, von Mises, Mohr-Coulomb and Drucker-Prager. Such 

relations are seen to be particularly useful when the initial stress 

equations are employed, hence two different algorithms for stepwise 

plasticity solutions are presented and implemented for the initial 

stress formulations. 

At the end of the chapter examples and comparisons with 

alternative solutions are presented and these also include applications 

of the half-plane fundamental solution. 

CHAPTER 6 is devoted to the application of the boundary element 

technique to time-dependent nonlinear material problems. The 

uniaxial models presented in Chapter 2 are employed in equivalent or 

effective form to generate the constitutive equations and a unified 

procedure, capable of handling viscop1asticity and creep is presented. 

In addition, the procedure is also applicable to simulating pure 

e1astop1astic solutions through the consideration of long term load 

increments followed by stationary conditions. 

The solution technique employed is an explicit Euler single-step 

[106-108J process which is introduced in conjunction with time step 

limiting considerations for stability. Also, a series of examples is 

presented to outline the accuracy and applicability of the formulation, 

including e1astop1astic, creep and viscop1astic problems. 

CHAPTER 7 presents a general discussion on the various aspects 

of the different solution techniques employed here, together with 

the concluding remarks for the present research. 
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CHAPTER 2 

BASIC THEORY 

2.1 Introduction 

This chapter is partly devoted to introducing some basic 

concepts of the theory which is going to be used in the subsequent 

chapters of this work. Although the major concern of these notes is 

with the application of the boundary element method to nonlinear 

material problems, the chapter starts by briefly reviewing some 

basic concepts of the small strain theory of elasticity. These concepts 

can be taken from any standard text on the subject [26, 61, 68, 69, 75J 

and are therefore presented without need for further comments. 

In the later sections of the chapter; plasticity, viscoplasticity 

and creep are introduced through the examination of the uniaxial 

stress-strain curve of inelastic materials. The differences between 

these inelastic material idealizations are then illustrated and 

discussed. 

Towards the end, the basic differential equations which 

characterize continuum inelastic problems are presented following 

two different representations; namely initial strain and initial 

stress, depending on whether the inelastic terms are considered as 

"initial strains" or "initial stresses". 

2.2 Theory of Elasticity 

Throughout this work the so-called Cartesian tensor notation 

is used. This notation is not only a time saver in writing long 
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expressions, but is also extremely useful in derivation and in the 

proof of theorems. Such notation makes use of subscript indices 

(I, 2, 3) to represent (x, y, z) and also renders summation symbols 

unnecessary when the same letter subscript occurs twice in a term. 

Hence, in three dimensions, 

a.a. 
~ ~ 

(2.2.1) 

and 

In addition, the permutation symbol and the Kronecker 

delta symbol 

e ijk= 

and 

'i; = { 

0 .. will be used, i.e. 
~J 

0 when any two indices are 

+l when i, j, k are I, 2, 
permutation of I, 2, 3· , 

-1 when i, j, k are an odd 
of I, 2, 3. 

1 if i j 

0 if i. f j 

equal; 

3 or an even 

permutation 

Herein, unless otherwise stated (locally), subscripts are 

assumed to have a range of three in three dimensional problems 

(2.2.2) 

whereas for two dimensions (plane stress and plane strain) this range 

is only two. In this section, however, only three dimensional 

expressions are considered. 

The external forces acting at any instant on a body are classified 

in two kinds : body forces and surface forces. 
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Body forces act on the elements of volume or mass inside 

the body. e.g •• gravity. These forces will be reckoned per unit 

volume. Surface forces act on the bounding surface of the body and 

will be reckoned per unit area of the surface across which they act. 

Such forces are designated tractions. 

If one considers an infinitesimal rectangular parallelepiped sur-

rounding a given point within the body. it readily follows that 

static equilibrium of forces and moments requires satisfaction of the 

following equation 

0 ••• + b. 
1J.1 J 

o (2.2.3) 

where the components of the stress tensor are represented by o .. 
1J 

b. stands for the components of the body force. Space derivatives 
J 

are indicated by a comma.i.e •• ao .. /ax. = 0 ••• 
1J 1 1J.1 

and 

Furthermore. if there are no body moments applied. equilibrium 

conditions also leads to 

o .. 
1J 

o •• 
J1 

(2.2.4) 

If the six different components of the stress tensor are 

assumed to be known at a certain point. the equivalent tractions (Pi) 

acting on any plane through this point can be computed by 

p. = o .. n. 
1 J1 J 

where n. represents the direction cosines of the normal to the 
J 

plane. 

(2.2.5) 

Regardless to the state of stress at a given point. one can 

always choose a special set of axes through the point in such a way 
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that the shear stress components vanish when the stresses are referred 

to it. The directions of these special axes are called principal 

directions and the normal stress acting on each plane perpendicular 

to the principal directions are called principal stresses. 

The principal directions can be obtained by considering 

the following relation 

(2.2.6) 

which indicates that the traction vector is parallel to the normal 

vector. 

Substitution of (2.2.6) into (2.2.5) leads to 

(0 .• - A6 .. )n. = 0 • 
~ ~ 1 

(2.2.7) 

Equation (2.2.7) represents a system of three linear homogeneous 

equations which for 0 .• + 0 must admit a non trivial solution 
1J 

(n.n. = 1). Consequently, 
1 1 

or, in expanded form 

where 

Icr .. - A6··1 
~ ~ 

o 

o 

(2.2.8) 

(2.2.9) 

(2.2.10) 
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The principal stresses (roots of the cubic equation (2.2-.9» 

are physical quantities whose values do not depend on the coordinate 

system in which the components of stress where initially given. They 

are. therefore. invariants of the stress state at the point. A 

direct consequence is that 11 • 12 and 13 are also scalar 

invariants with respect to any rotation of the Cartesian reference 

axis. 

It can be demonstrated that the three principal directions are 

mutually perpendicular. Hence. if the reference axes are chosen to 

coincide with the principal axes of stress. 

(2.2.11) 

where and are the principal stresses. 

It is convenient in plasticity theory to split the stress 

tensor into two parts. one called the spherical stress tensor and 

the other the stress deviator or deviatoric stress tensor. The 

spherical stress tensor (cr .. ) is related to the mean stress as follows 
1J 

a .. 
1J 

(2.2.12) 

and the components of the deviatoric stress tensor are given by 

s .. = a •• - a •• 
1J 1J 1J 

(2.2.13) 

The principal directions of the stress deviator tensor are 

the same as those of the stress tensor and it is usually easier to 
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compute the principal deviator stresses (Sk) then to calculate 

cr k' If A now denotes anyone of the principal deviator stresses. 

a derivation similar to that of equation (2.2.9) yields 

where J l • J 2 and J 3 are the scalar invariants of the stress 

deviator analogous to those given in (2.2.10). but now calculated 

with S .. instead of cr ..• Hence. 
1J 1J 

1 
J 2 = -2 S .. S •• 

1J 1J 

(2.2.14) 

(2.2.15) 

Equation (2.2.14) can be solved explicitly by the following 

substitution [76J 

(2.2.16) 

which leads to 

(2.2.17) 

The expression in square brackets is equal to - sin3a , thus 

sin3a = _ J 3 [L)~ 
2 J • 

2 
(2.2.18) 

Assuming that the first solution is obtained with 3a in 

the range ± w/2 (i.e.- w/6 ~ a ~ w/6), the other two solutions of 

(2.2.18) are found by the cyclic nature of sin(3a + 2nw). This 

furnishes the three independent roots of (2.2.14). namely 

(2.2.19) 
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where for Sl > S2 > S3 one has and 

4 
a3 = a + '3 'If • Note that the principal stresses can be calculated 

by the simple relation 

(2.2.20) 

In addition. 'If 'If - 6 ~ a ~ 6 is also a stress invariant which can be 

used as an a1terantive to J 3 in representing the stress state at 

a point. 

Under the action of forces. a body is displaced from its 

original configuration. If x. denotes the position of a point P 
~ 

of the body in its initial state and x. + u. denotes the position 
~ ~ 

of the same point when the body is deformed. ui represents the 

displacement components and is a function of x. 
~ 

If the displacements 

are such that their first derivatives are so small that the square and 

product' of the partial derivatives of u. 
~ 

are negligible. then strains 

can be represented by the Cauchy's infinitesimal strain tensor. 

1 
E •• = -2(U •• + u •• ) • 
~J ~.J J.~ 

(2.2.21) 

In general. during the deformation process. any small element 

of the body is changed in shape. translated and rotated. Consider 

the point p' in the neighbourhood of P with coordinates x. + dx .• 
~ ~ 

Avoiding rigid body translations. the relative displacement of P' 

with respect to P is given by 

duo = u •. dx. 
~ ~.J J 

(2.2.22) 

which can be further written as 

1 1 duo = -2(u •. + u .. )dx. - -2(u •. - u .. )dx. 
~ ~.J J.~ J J.~ ~.J J (2.2.23) 
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E •• dx. - w • • dx. 
1J J 1J J 

(2.2.24) 

where w •• 
1J 

is the rotation tensor of the infinitesimal displacement 

field, i. e. , 

w •• 
1J 

1 
-2(u •• - u •• ) • 

J,1 1,J 
(2.2.25) 

From the above it is seen that although the displacements 

uniquely define the components of the strain tensor, the inverse 

problem is not so straightforward. In the first place, strains 

represent pure deformation, whereas displacements include rigid body 

motion which has no effect on the strains. This problem can, however, 

be made unique by specifying the rigid body motion (i.e. displacement 

and rotation) at some point of the body. A more difficult problem is 

encountered in calculating the displacements from strains using 

equation (2.2.21). Here, a· system of six differential equations for 

the three unknown functions ui is obtained, and consequently one 

must expect a not possible solution unless some additional conditions 

are satisfied. These conditions are given by the compatibility 

equations and are found in standard texts on elasticity. They are 

as follows 

E •• k. + Ek •.• - E· k .• - E •• ·k = 0 • 1J, N N, 1J 1, J N J N, 1 
(2.2.26) 

Equation (2.2.26) is a necessary and sufficient condition that 

the strain components give single-valued displacements for simply 

connected regions. For multiply connected regions, however, this 

condition is necessary but generally not sufficient. 

It should be emphasized that all the relations presented so 

far are independent of material properites, consequently, they hold 
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for both elastic and inelastic material behaviour. 

For an isotropic elastic material in which there is no change 

in temperature, Hooke's law relating stresses and strains can be 

stated in the form 

cr •• 
1J 

(2.2.27) 

or inversely 

(2.2.28) 

where v is Poisson's ratio and G is the shear modulus. 

The shear modulus can be related to the Young's modulus and v 

as follows 

E 
G "" 2(1+v) • (2.2.29) 

Alternatively expression (2.2.27) can be written more 

concisely as 

cr •• 
1J 

(2.2.30) 

in which is the fourth-order isotropic tensor of elastic 

constants given by 

(2.2.31) 

Equations (2.2.3), (2.2.21) and (2.2.27) represent a set of 

15 equations for 6 stresses, 6 strains and 3 displacements which can 

be further manipulated. A straightforward procedure is to substitute 

equation (2.2.21) into (2.2.27) to obtain stresses in terms of 

displacement gradients, and then substitute the result into equation 
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(2.2.3) to obtain three second order partial differential equations 

for the three displacement components .• The result of these operations 

is the well-known Navier equation which may be written in the following 

form 

(2.2.32) 

This equation is particularly convenient when displacement boundary 

conditions are specified. By using equations (2.2.21) and (2.2.27) 

as before, but now substituting into equation (2.2.5) for boundary 

points, the traction boundary conditions are obtained as 

2Gv 
~1·2 uk kn . + G(u .. + u .. )n. = p. - v ,1 1,] J ,1 J 1 

(2.2.33) 

where n. stands for the direction cosines of the outward normal 
J 

to the boundary of the body. 

It is interesting to note that since the equilibrium condition 

is now ex~ressed in terms of displacements in equation(2.3.32), the 

compatibility equations are no longer required. The displacement U. 
1 

is solved from the Navier equation to satisfy the boundary conditions. 

After u i is known throughout the body, the strains are obtained 

by equation (2.2.2l),and the stresses are calculated by Hooke's 

law. 

The solution of equation (2.2.32) by the direct boundary 

element method is the object of Chapter three of this work. 

2.3 Inelastic Behaviour of Materials 

In the theory of elasticity reviewed in the last section of 

this chapter, there were two controlling factors: complete recovery 

of the unstrained configuration when the loads are removed and the 
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dependence of the deformations only on the final stresses, not on the 

previous load history or strain path. In plasticity, these two 

factors are not realised. 

Plasticity is possibly defined as a property which enables 

a material to be deformed continuously and permanently without rupture 

during the application of stresses exceeding the elastic limit of the 

material. Thus, residual strains are expected to occur on removal 

of the load and furthermore the final deformation depends not only on 

the final stresses, but also on the path stress history from the 

beginning of yield. 

The problem of formulating physical relations describing the 

actual behaviour of a material during plastic flow is a very complex 

one. This complexity is due to the non-linearity and irreversibility 

of the deformation processes and to a number of phenomena which occur 

only after the material becomes plastic. The yield characteristics 

of many materials, for instance, are modified by the rate of straining, 

with the resistance to deformation increasing markedly with the speed 

of loading (viscous effect). On the other hand, creep of metals is 

one example where deformations will occur (usually at elevated 

temperatures) with extended periods of time under constant stress. 

In order to simplify the present discussion, it is here considered 

some possible approximate diagrams that may represent the behaviour 

of a specimen stressed in simple tension or compression. 

An elastic perfectly plastic material is shown in figure 2.3.1. 

Here, as the stress in the loaded specimen is increased, from 0 

towards A, an elastic recoverable strain takes place until the 

stress reaches the value cr = Y , when a plastic strain is superimposed 
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and further deformation will occur under constant yield stress. 

If, after a point B has been reached, the specimen is unloaded, 

the path 0 - A - B is not retraced due to the irreversibility of 

plastic deformation, but the stress point will follow the line 

B - C parallel to 0 - A. Stressing the specimen in compression 

will therefore lead to point C for which the compressive yield 

stress a = - Y is attained. Thereafter the specimen deforms 

under constant value of yield stress and point D may be reached 

allowing for the entire cycle to be repeated. 

A more complex situation occurs when hardening/softening effects 

are taken into account. This can be seen in figure 2.3.2 where 

simplified linear hardening is characterized by a constant modulus 

ET • After reaching the point A for which a = Y , a further increase 

of stress is now required to induce further deformation. When the 

specimen is unloaded from the point B, the stress point moves along 

the line B - C as before, but it is known from experiments that the 

compressive yield stress will vary depending on the previous deformation 

history, thus laBI ~ laci in general and this is referred to in the 

literature as the Bauschinger effect. 

There are several simplified models used to describe the 

Bauschinger effect. At one extreme it is assumed that the elastic 

unloading range will be double the initial yield stress (kinematic 

hardening). Hence, 

(2.3.1) 

At the other extreme there is the isotropic hardening theory 

which assumes that the mechanism that produces hardening acts equally 

in tension and compression, thus 

(2.3.2) 
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Fig. 2.3.1 Uniaxial stress-strain diagram for an elastic perfectly 
plastic material. 
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Fig. 2.3.2 Uniaxial stress-strain diagram for a hardening material. 
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Actually, neither theory accurately represents the hardening 

effects in reverse loading. The kinematic model, though more accurate 

in this situation, tends to overcorrect for the Bauschinger effect 

[63] and the isotropic model does not take into account such anisotropic 

behaviour. The latter, however, is mathematically simpler and 

consequently has been most frequently used. Furthermore, the drawback 

involved in the isotropic hardening theory can be overcome by making 

use of the fraction model [77J, also known as the overlay model 

[78J. In this model a material particle is considered to be composed 

of various portions which can be represented by subelements connected 

in parallel showing isotropic hardening behaviour in plastic deformation. 

By assigning different properties to each subelement and assuming that 

all subelements are subjected to the same total strain, the proper 

material behaviour can be simulated as closely as possible, including 

the Bauschinger effect. 

If only one subelement is chosen, the isotropic hardening 

theory is obtained. However, if necessary, the model can also 

describe kinematic hardening behaviour by making a suitable choice 

of the number of subelements, their size and isotropic hardening rules. 

This means that the kinematic model is no longer needed, and 

consequently attention will be given in the subsequent parts of this 

work to the isotropic hardening theory. Thus, from now on a ~ 0 

is always implied for simplicity. 

Assuming that the total strain E is subdivided into an 

elastic strain 

where 

e 
E and a plastic strain 

e 
E 

a 
E 

EP , one gets 

(2.3.3) 

(2.3.4) 
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Fig. 2.3.3 Uniaxial stress-strain diagram showing elastic 
and plastic strains. 

With reference to figure 2.3.3 it is seen that pure elastic 

behaviour is obtained for initial loading when 

a - Y < 0 • 

Once 0 exceeds Y, however, this condition changes such that 

o is tested against the yield stress 0 0 as follows 

0-0 < 0 
o 

where 0 0 has the initial value Y and varies according to a 

certain rule as plastic flow progresses. 

(2.3.5) 

(2.3.6) 



www.manaraa.com

30 

For the case depicted in figure 2.3.3 it is easily seen that 

CJ o 
y + ~.3.7) 

In order to keep the present discussion sufficiently general, 

the above expression can be related to the work hardening hypothesis 

by assuming that CJo is a function of a hardening parameter k which 

represents the total plastic work; namely, 

Hence, 

and 

k = f CJ de:P • 

CJ o 

H' 
CJ 

where H' is the slope of the uniaxial curve replotted as stress 

versus plastic strain. 

(2.3.8) 

(2.3.9) 

(2.3.10) 

Equation (2.3.7), which corresponds to linear work hardening, 

can therefore be written as 

CJ 
o 

Y + H' e: P 

in which for this case H' is a constant given by 

H' 

(2.3.11) 

(2.3.12) 

Recalling the condition presented in (2.3.6), plastic behaviour 

is possible if the following condition or criterion is satisfied 
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a - a 
o 

o 

where F(a, k) is a yield function subjected to the restriction 

F (a, k) ~ 0 • 

(2.3.13) 

(2.3.14) 

It was mentioned before that some materials present pronounced 

rate dependent plastic behaviour. Within the context of the classical 

or inviscid theory of plasticity, however, time independence is a 

basic assumption and this makes a simultaneous description of plastic 

and rheologic effects impossible. Such a unified description is 

the object of the viscoplastic theory. 

Every material shows more or less pronounced viscous properties. 

In some problems these properties can be neglected without any real 

effect in the results, but in other problems this influence may be 

essential and the important feature of the inelastic behaviour is the 

time dependence of the deformation process. Thus, in such cases, the 

inelastic strains will depend on the time stress history as well as 

on the path stress history. Consequently, different results will 

be obtained for different loading paths and different durations of 

the loading processes. 

In the present work, the elastic/viscoplastic model due to 

Perzyna [72 - 74J has been adopted. This model assumes that the 

material exhibi ts viscous properties in the plastic region only, 

which means that F < 0 represents a pure elastic behaviour. 

Moreover, the yield criterion of equation (2.3.13) is still valid 

as an initial condition, now designated static yield criterion. 

In spite of these common features, viscoplasticity allows for 

F(a, k) > 0 (2.3.15) 
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which is impossible in the so-called inviscid theory of plasticity. 

The uniaxial plastic strain for rate dependent plastic 

materials is given in rate form as follows 

(2.3.16) 

where the dot indicates time derivative, y is a material parameter 

possibly function of time, temperature, etc. and 

1 
0 [for 

~ ~o] 

F ~ 0 
(2.3.17) 

for F > 0 • 

The function ~ is selected from experimental results and different 

types have been proposed [72J, e.g., 

~(X) ~(X) x ~(X) expX - 1 

N N 
(2.3.18) 

~(X) L A (expXa - 1) 
a=l a 

~(X) L 
a=l 

Equation (2.3.16) clearly indicates that the rate of increase 

of the inelastic strain is a function of the excess stress above the 

static yield criterion. This function of the excess stress generates 

the viscop1astic strain rate according to a predetermined viscosity 

law which is better illustrated by means of the rheological model of 

figure 2.3.4. 
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a 

Fig. 2.3.4 Rheological model £@r elastic/viscoplastic 
behaviour. 

1 

In this mechanical model. the friction slider is assumed to 

sustain all the stress 0 up to 0 = 0 0 • when it then becomes active 

and slides for When this happens. the excess stress 

is carried by the (possibly nonlinear) dashpot which generates the 

viscoplastic strain. The elastic part of the total strain is 

instantaneously given by the elastic spring. 

It should be noticed that in general the dashpot and the slider 

may have properties that depend on the viscoplastic strain (H'# 0). 

Thus. after some time under constant applied o. the slider tends 

to become rigid again and an asymptotic static configuration (~p = 0) 



www.manaraa.com

34 

is achieved providing satisfaction of the static yield criterion. 

In order to demonstrate the equivalence of the rheological 

model and equation (2.3.16). consider the equilibrium condition 

(0 ~ 0 ) 
o 

o = F + 0 
o 

where F represents the stress acting on the dashpot and 

the part that corresponds to the friction slider. 

o 
o 

is 

(2.3.19) 

The stress in the viscous dashpot is related to the viscop1astic 

strain rate as follows 

(2.3.20) 

where ~ denotes the damping parameter of the dashpot. 

Substituting (2.3.20) into (2.3.19) and rearranging gives 

(2.3.21) 

which reads 

(2.3.22) 

Hence, 

(2.3.23 ) 

which corresponds to equation (2.3.16) if 

(2.3.24 ) 
y 

and 

(2.3.25) 
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It is interesting to study some closed form solutions to 

equation (2.3.21). For simplicity, assume that H' = 0 (0 = Y) 
o 

and that the uniaxial model is subjected to a constant total strain 

rate. Thus, equation (2.3.21) becomes 

e: = ~ + 1. (0 - Y) E Y 

and leads to the following linear differential equation 

E(~ + y) 

where e: = constant. 

The solution of equation (2.3.27) is given by 

o = Y ( f + 1 ) + C exp ( - y~ t ) 

(2.3.26) 

(2.3.27) 

(2.3.28) 

in which t denotes time and C depends on the initial conditions. 

If at t = 0 , e: = Y/E and e:P o , the following expression 

for the stress arises 

(2.3.29) 

which can also be written in terms of strain instead of time as 

follows (see figure 2.3.5). 

y~ { 0= y 1 - ~p [ t [ 1 - E; l] j. y • (2.3.30) 

Alternatively, one can assume that initially an instantaneous 

e: = t (f + 1) is applied and then the total strain increases at a 

constant rate. In this case the above expression greatly simplifies 

and the stress remains constant throughout, i.e., 

(2.3.31) 
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a 

y 
'-.tatlc curve 

. 
Fig. 2.3.5 Uniaxial stress-strain curve for £ constant 
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(t = 0 + £ = Y/E) 
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Fig. 2.3.6 Uniaxial stress-strain curve for £ = constant. 

[t = 0 + £ = i ( ~ + 1 ) instantaneously apPlied] 

£ 

£ 
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This case is illustrated in figure 2.3.6. 

It is instructive now to point out an important distinction 

between the inviscid theory of plasticity and the viscoplastic 

theory adopted here. For pure plasticity, the yield condition 

presented in (2.3.13) leads to a necessary condition for plastic 

behaviour to occur. Once the stress point is satisfying the equation 

F = 0 , a loading criterion can be defined (H' > 0) , depending on 

what happens next, i.e., 

F 0, cr < 0 represents unloading (leads to an elastic state); 

F 0, cr > 0 represents loading (leads to another plastic state). 

In viscoplasticity, however, the case F > 0 exists and 

consequently viscoplastic behaviour will continue to occur completely 

independent of whether • > 
cr < 0 • 

An intersting feature of the elastic/viscoplastic model is 

that for slow incremental loading processes, the results obtained 

by the classical theory of plasticity are approached (provided the 

stationary state F = 0 is possible). This has been mentioned 

before when describing the rheological model and is indeed observable 

in figure 2.3.6. When this is the case, clearly the function ~ and 

the parameter y become immaterial, the latter acting just as a 

time scale factor which renders time a fictitious variable. 

Such features can be better explained by rewriting equation 

(2.3.16) in the following form (F ~ 0) 

(2.3.32) 

which after rearranging gives 
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F -1 ( ~p ) a <I> -
o Y 

(2.3.33) 

or 

F -1 [ ~ - ~/E ) a <I> • 
o Y 

(2.3.34) 

For slow incremental loading processes, the rates become vanishingly 

small along the loading path, thus F = 0 is approximately attained 

throughout. In practical terms, one can think of a discrete 

loading programme in which sufficiently small load increments are 

applied instantaneously. After each load increment, the load is kept 

constant and a stationary state is allowed to occur (i.e., the 

friction slider "locks" again in the rheological model). In this 

fashion, the complete loading path can be followed with the statical 

yield condition being satisfied at a number of discrete points along 

the path. 

In the simple uniaxial behaviour discussed here, increments of 

any size can be applied because the result at the final point is 

always the same. This is not the same for continuum problems; 

in such cases, stress redistribution usually occurs, hence the same 

stress path may not be obtained. Consequently, small increments must 

always be kept in mind for the general case. 

With reference to the mechanical model of figure 2.3.4, 

it is immediately apparent that on removal of the dashpot - assuming 

~ = 0 (i.e. y+ 00) - a pure elastoplastic problem is simulated and 

only instantaneous response is obtained. Here, the restriction 

a ~ ao is readily found necessary in order to maintain equilibrium. 

Another useful simulation can be obtained by assuming that instead 

of the dashpot, the friction slider is removed (i.e., ao 0) • In this 

case, the mechanical model retains its rheological properties and 
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corresponds to the well-known Maxwell model where a linear dashpot 

is associated in series with a spring. Therefore, by assuming 

nonlinear properties to the dashpot, the so-called secondary or 

steady creep of metals [66, 67, 63, 65J can be equally represented 

in this comprehensive model. This matter will be dealt with in 

what follows. 

There is experimental evidence that some metals, usually at 

elevated temperature, deform continuously with time under constant 

load. This phenomenon is designated creep and the time dependent 

strain originated in the process is called creep strain. A typical 

uniaxial curve of creep strain (ec ) versus time under constant load 

is shown in figure 2.3.7. The first part, AB, where the creep rate 

decreases rapidly, is known as primary or transient creep. This 

portion is usually recoverable with time after unloading. The second 

stage, BC, is associated with a constant creep rate and consequently 

called steady or secondary creep. In this stage, creep leaves 

permanent strain. The final stage, CD, known as tertiary creep, is 

characterized by a rapid increase in the creep rate and leads quickly 

to rupture. Tertiary creep is greatly affected by the reduction in the 

cross-sectional area at large strains. This fact, allied to the usual 

short duration of the primary stage, generally leads to interest in 

the secondary creep only, though the primary part cannot always be 

neglected. 

In constant stress tests, it is customary to represent the 

creep strain by a general equation of the form 

where T is temperature. 

c e g(a, t, T) (2.3.35) 



www.manaraa.com

Fig. 2.3.7 Typical uniaxial creep curve under constant load. 

A good review of the different types of relations proposed 

for equation (2.3.35) is given in [66]. In tests of short duration, 

primary creep predominates. A commonly used expression to represent 

this primary creep is 

C 
E 

For the secondary part, the following representation has been 

preferred 

C 
E 

(2.3.36) 

(2.3.37) 

where B, K, m, nand k are temperature dependent material parameters. 
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Generalization of the above equations to include time varying 

stress is a questionable assumption commonly made. Here, it is the 

strain rate at any time which is of interest. Thus, equation (2.3.36) 

gives the time hardening expression 

'c e: (2.3.38) 

and equation (2.3.37) reduces to the well-known Norton's law, i.e., 

'c e: (2.3.39) 

Equation (2.3.39) seems to be acceptable for materials which 

only exhibits secondary creep and has been widely applied in many 

practical problems. Note that this equation together with the 

elastic strain rate (a/E) can be simulated by the nonlinear Maxwell 

model mentioned before. 

For short term problems, equation (2.3.38) can be substituted 

by its strain hardening counterpart. This can be done by expressing 

t from equation "(2.3.36) as a function of e: c and 0, and then 

substituting the result in expression (2.3.38). The final expression 

is 

·c e: (2.3.40) 

For constant stress the above equation is the same as (2.3.38), 

but for time varying stress, different results will be obtained. 

Experimental data seem to agree better with the strain hardening 

approach. This is true especially for very short time tests 

[66J. A shortcoming of both relations is that they do not predict 

the reversal of the creep strain after unloading. Here, the use of 

overlay type models [j7, 78J, appears to be promising. 
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Throughout this brief exposition only a ~ 0 was considered. 

It should be kept in mind that for a < 0 a negative creep or 

plastic strain (Ial ~ a) will be generated instead. 
o 

The expressions 

remain valid if only the absolute values are considered. The reason 

for keeping a ~ 0 will be more evident in Chapters 5 and 6 where the 

generalization for multiaxial stress states will be presented and 

the relations discussed here will be readily applied in equivalent 

or effective form. 

2.4 Governing Equations 

In the present section the basic differential equations for 

continuum inelastic problems are introduced. In order to keep a 

unified notat10n, these equations are presented in rate form. This 

is a natural procedure for time dependent problems such as viscoplasticity 

and creep. For classical plasticity, it should be emphasized that 

pure incremental quantities could be equally used, since the relations 

are homogeneous in time due to the lack of time dependent effects. 

Plasticity, however, can be associated to a time-like parameter which 

is in fact independent of the time scale. 

Within the context of small strain theory, the total strain 

rate for inelastic problems is assumed to be represented by 

1· • 
E.. = -2 (u. • + u. • ) 

1J 1,J J,1 
·e ·a 
E •• + E •• 

1J 1J 
(2.4.1) 

where ·e 
E •• 

1J 
and ·a 

E •• 
1J 

are respectively the elastic and inelastic parts 

of the total strain rate tensor. 

Herein, by inelastic strains one means any kind of strain field 

which can be considered as "initial strains", Le., 



www.manaraa.com

'a 
E: •• 
1J 

43 

'p 'c 'T 
E: .. + E: .. + E: .. 
1J 1J 1J 

~~. - plastic or viscoplastic strain rate. 
1J 

'c 
E: ij - creep strain rate 

~~. - thermal strain rate. 
1J 

The equilibrium conditions presented in (2.2.3) can now be 

written in rate form as 

(2.4.2) 

(J.. • + b. = 0 • (2.4.3) 
1J.1 J 

Equation (2.4.3) is valid in the interior of the body. The same 

condition when applied to the boundary surface, leads to the following 

rate version of equation (2.2.5). 

o 

where n. stands for the direction cosines of the outward normal 
J 

to the boundary of the body. 

(2.4.4) 

If inelastic strains are considered as initial strains, the 

application of Hooke's law to the elastic part of the total strain 

rate tensor results in the following expression for the stress rate 

components 

(J •• 
1J 

(2.4.5) 

in which 

The above expression can be rewritten in terms of initial 

stresses 
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. 
o .. 

1.J 
• 2Gv' 'a 

2GEij + l-2v Ekk °ij - °ij (2.4.6) 

where 'a o .. 
1.J 

represents the components of the "initial stresses" 

given by 

'a o .• 
1.J 

(2.4.7) 

The substitution of equation (2.4.5) into (2.4.3) and (2.4.4), 

together with equation (2.4.1) gives [65] 

1 • 
u + --u j ,u, l-2v R.,R.j (2.4.8) 

and 

'a v A 2Gv 
Pi + 2G(Eij nj + l-2v e n i ) = f.=2'\} uR.,R. n i 

+ G(~ .. +~ .. )n •• (2.4.9) 
1.,] J ,1. J 

Equation (2.4.8) is an extended form of the Navier equation presented 

in eqn. (2.2.32) and (2.4.9) represents its traction boundary 

conditions (see eqn. (2.2.33». The above expressions can alternatively 

be written in the following form 

and 

+ _v_u 
uj,R.R. l-2v R.,R.j 

. 
h. 

-....J.. 
G 

(2.4.10) 

(2.4.11) 

where bj and Pi are pseudobody forces and pseudotractions given by 

b. 
J 

h. - ~~ .. 
J 1.J ,1. 

(2.4.12) 

and . 
p. p. + 2G(~a n + _v_ e n1..) 

1. 1. ij j l-2v (2.4.13) 

One can notice that equation (2.4.10) represents a set of three 

quasi-linear partial differential equations for the displacement rates 
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(inelastic terms appear on the right-hand-side). Therefore, 

provided the inelastic strain rates are known, the same argument 

presented at the end of Section 2.2 still applies. 

Expressions (2.4.1) - (2.4.13) have been presented for three 

dimensional bodies. For plane problems, these equations can also 

be used (i, j, k, t = 1, 2) with in plane strain 

and replaced by v = v/(l +v) in plane 

stress. 

Different procedures for the boundary element solution of the 

above equations will be presented in these notes. The various form-

u1ations will be seen to stem from the equations introduced in this 

section and consequently the names initial strain and initial stress 

will be broadly used to indicate their corresponding integral 

equations. This remark may appear unnecessary, but it is here included 

to avoid confusion with some early finite element formulations where 

the names initial strain/stress were used to indicate the way in 

which plastic strain increments are calculated from the constitutive 

equations [15J. In these formulations, the so-called initial strain is 

unable to handle ideal plasticity. This restriction, of course, does 

not apply to the formulations presented here. 



www.manaraa.com

CHAPTER 3 

BOUNDARY ELEHENT FORHULATION FOR ELASTIC PROBLEMS 

3.1 Introduction 

This chapter is primarily intended to show how an elasticity 

problem, governed by the Navier equation (2.2.32) and with prescribed 

boundary conditions, can be reduced to a suitable integral equation 

amenable to numerical solution within the framework of the direct 

boundary element method. Hence, the basic reciprocal relations are first 

deduced, leading to the so-called Somigliana's identity for dispacements 

[32,26]. Next, the complete boundary element formulation using the 

fundamental solution due to Kelvin is reviewed. A new formulation of 

the technique for half-plane type problems is also introduced through 

the adoption of a fundamental solution satisfying the traction-free 

condition over the surface of the semi-plane. A subsequent section is 

entirely concerned with the numerical implementation of the method and 

the last section presents the application of the half-plane formulation 

to some classical problems. 

3.2 Somigliana's Identity 

In order to clarify the subsequent ideas, an initial remark is 

noVl due; throughout these notes the concept of regular region will be 

used in the sense defined by Kellogg [31J. More specifically, regular 

regions are always implied here, and these represent regions bounded 

by regular surfaces (not necessarily smooth or Liapunov everYVlhere) 

which may have corners or edges, provided they are not too sharp [4J. 
The extension of this concept to infinite or semi-infinite regions will 

be discussed in another section of this chapter. 
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Consider a body defined by 0 + r (r is the boundary and 

o is the domain as shown in figure 3.2.1) which is in a state of 

equilibrium under some prescribed loads and displacements. This state 

is here represented by the set and b •• 
1 

Let us now assume a domain 0* with boundary r* which contains 

the body 0 + r under consideration (see figure 3.2.2). As before, this 

new region is considered to be in an equilibrium state now denoted by 

a11 ., E*. , etc. 
1J 1J 

If elastic properties remain valid in both cases,the 

following integral statement can be inferred by simple symmetry of the 

tensors involved. 

f 0*. E •• dll 
1J 1J = f O •• 

1J 
o o 

Integrating by parts both sides of (3.2.1) and using expressions 

(2.2.21) and (2.2.3), comes 

f M u. dO + 
1 1 

o 
f p* u. dr 

1 1 

r 
= f 

o 
b. u* dO + f 1 1 

r 

which corresponds to Betti's second reciprocal work theorem. 

Equation (3.2.2) can be further modified by assuming that the 

body force components M 
1 

correspond to positive unit point loads 

applied at point s c 0* in each of the three ortogona1 directions 

given by the unit vectors Pi. This can be represented as follows 

(3.2.1) 

(3.2.2) 

(3.2.3) 

where 6(s, q) represents the Dirac delta function, s is the singular 

point (load point) and q CO* is a field point. 
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x, 

Fig. 3.2.1 Three dimensional body with volume n and boundary r. 

x, 

Fig. 3.2.2 General region n* + r* containing the body n + r 
with the same elastic properties. 
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The Dirac delta function has the following properties 

o (s, q) o if s f q 

o (s, q) if s;q 

f g(q) o(s, q) dn*(q) 

n* 

g(s). 

Therefore, if s £: n , the first integral in eqn. (3.2.2) 

can be represented as 

J b! u i dn ui(s) Pi 

n 

Furthermore, if each point load is taken as independent, the starred 

displacements and tractions can be written in the form 

p* ; p*.(s, q) P. 
J ~J ~ 

(3.2.4) 

(3.2.5) 

(3.2.6) 

where u*.(s, q) and p*.(s, q) represent the displacements and tractions 
~J ~J 

in the j direction at point q corresponding to a unit point force 

acting in i direction (Pi) applied at point s. 

From the above it is seen that equation (3.2.2) can be rewritten 

to represent the three separate components of the displacement at 

s in the form 

f u*.(s,Q) p.(Q) dr(Q) - f 
~J J 

p*.(s,Q) u.(Q) dr(Q) 
~J J 

r r 

+ f u*.(s,q) b.(q) dn(q) 
~J J 

(3.2.7) 

n 
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where here and in what follows; s. qen and S, Q e r . 

Equation (3.2.7) is known as Soudgliana's identity for displace

ments [32J and was here obtained by reciprocity with a singular solution 

of the Navier equation satisfying 

Gu* + _G * .. + "'(s q)P - 0 j,kk 1-2\1 ~,\{.J u, j - . 
(3.2.8) 

Thus, solutions of the above equation are called fundamental solutions. 

Equation (3.2.7) can alternatively be obtained through weighted 

residual considerations [I, 2J. Such procedure possesses the advantage 

of being more general and permits a straightforward extension to more 

complex differential equations. This technique is going to be applied 

in Chapter 4 where the inelastic boundary element formulation is presented. 

A common feature of both procedures is.that they involve operations such 

as integrating by parts (equations (3.2.1) - (3.2.2» with the singular 

delta function, and this may create some concern regarding to the final 

result. Here we recall reference [80J. page 317, which reads 

"Whatever its theoretical limitations. the 15 function is a 

useful device which. at worst. can be used formally provided the answers 

to which it leads are subsequently checked experimentally or by ind~pendent 

analysis". Therefore. equation (3.2.7) will be obtained through a formal 

procedure in the next section. This will be performed after the 

presentation of the different fundamental solutions adopted here. 

3.3 Fundamental Solutions 

Following the definition of fundamental solution introduced in 

the last section (see eqn. (3.2.8». the different singular solutions 
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of the Navier equation considered here are now presented and classified 

according to the region n* + r* involved (see fig. 3.2.2). 

In the first class considered, n* is assumed to be an 

infinite elastic medium and consequently r* is taken to infinity. 

This case corresponds to the fundamental solution due to Kelvin [26], 

and the appropriate expressions for the fundamental displacements 

and tractions defined in equations (3.2.6) are given by [I, 2] 

u~.(s, q) 
1.J 

for 3-D problems, 

+ r . r .} 
,1. ,J 

- r . r . } 
,1. ,J 

for 2-D plane strain problems, 

p~.(s,q) 
1.J 

-1 {[ ] Clr ----- (1-2v)o .. + B r . r. ";\ 
4~~(1-v)r~ 1.J ,1. ,J an 

- (1-2v)(r .n. - r .n.) } 
,1. J ,J 1. 

(3.3.1) 

(3.3.2) 

(3.3.3) 

~ = 2, 1; B= 3, 2 for 3-D and 2-D plane strain respectively. Also, 

r = res, q) represents the distance between the load point sand 

the field point q and its derivatives are taken with reference to 

the coordinates of q, i.e., 

r = 1 (r. r.) 
1. 1. 

" r. ar 1. r . 
,1. = ax. (q) = r 

1. 

(3.3.4) 
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In addition, the strains (ejk) at any point q due to a unit 

point load applied at s in i direction can be written as 

e~k. (s, q) 
J 1 

-1 {(1-2V)(r k& .. + r .&.k) - r ·&.k + ar .r .r k} 
8C1.1r(1-v) GrCl. , 1J ,J 1 ,1 J ,1 ,J , 

(3.3.5) 

and the stresses, 

C1~k. (s, q) 
J 1 

- 1 ( 
CI.{(1-2Y)(r k & .. + r ·&k· - r . &J·k) 

4C1.1r(1-v)r l , 1J ,J 1 ,1 
(3.3.6) 

+ a r .r .r k} 
,1 ,J , 

The plane strain expressions are valid for plane stress if v is 

replaced by v = v/(l+v) • 

In order to illustrate some features of this fundamental 

solution, and also to clarify subsequent matters. the passage from 

3-D to 2-D plane strain will be commented. It is immediately apparent 

that the displacements u~. 
1J 

for 3-D problems vanish as 

This is not the same for 2-D; in this case. u~. -+- - 00 as 
1J 

r+co. 

r-+-oo 

due to the logarithm of r included in expression (3.3.2). Such 

behaviour of the 2-D case is entirely consistent and by all means 

expected. On physical grounds, for instance, one can consider the 

case of a semi-infinite bar extending from x(A) = 0 to x(B)-+- 00 

If the extremity B is assumed to be fixed. a positive axial load 

.. 

applied at A would produce a state of constant strains. Consequently. 

by integration, u (A) -+- 00. Alternatively. if the displacement at 

a third point C is subtracted as a rigid body motion (i.e •• extremity 

B is not taken as a reference any more) and this point is at a finite 

distance from A; u(A) would be finite and u(C) = 0, but u(B) -+- - 00 • 
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This simple analysis clearly indicates the physical nature 

of expression (3.3.2) and can be used to justify the passage from 

3-D to 2-D by integrating the former with respect to x3 (s) • 

Thus, consider the following alternative expression for displacements 

in the 3-D case 

~'L (s, q) 1J 
u~. - ;;~. 

1J 1J 

where u~. 
1J 

was given by expression (3.3.1) and ii~. = u~.(s. q) 
1J 1J 

represents the displacements at a certain point q, lying on a 

(3.3.7) 

perpendicular to the load direction i passing through s. Also, 

(3.3.8) 

and 

r = r(s, q) = (r~ + 1)!. (3.3.9) 

Expression (3.3.7) can be used to find the two dimensional 

fundamental displacements as follows 

[u~. (s,q)] 
1J 2-D 

where the integrals involved are (r 

and 

r.r. f 
1 J 

-co (r~ + 

1 

f ~*.(s,q) 1J dX3 (s) 

(r2 + r2)!) 1 2 

- 2 1n(r) 

2r .r .• 
,1 ,J 

(3.3.10) 

(i,j 1,2) 

(3.3.11) 

(3.3.12) 
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The above results can readily be seen to produce expression (3.3.2). 

Note that the displacements are zero at q (depending on the direction 

of the load). 

The second class of fundamental solutions adopted corresponds 

to half-space problems. In this case the Kelvin region is subdivided 

by an infinite horizontal plane F and its lower part is considered 

as Q* + r*. Thus, the region of interest becomes a semi-infinite 

medium with the plane part of r* being represented by the surface 

F. This lower half-space is always assumed to contain the region n + r 

&1d the plane xl = 0 is taken to be the boundary surface r which 

is here considered free from tractions (see figure 3.3.1). 

The stress distribution due to point loads applied within the 

isotropic half-plane was presented by Melan [79J. The solution to 

the equivalent three dimensional problem was given by Mindlin [4~ who 

produced not only the stresses, but also the corresponding displacements 

due to concentrated loads acting inside the half-space. The application 

of Mindlin's fundamental solution to boundary elements has been 

reported by Nakaguma [25J and the purpose of the present section is 

to present the complete solution to Melan's problem (including 

displacements), allowing for its general application to the boundary 

element technique. 

Following l1indlin' s procedure [44J, it is seen that the complete 

half-space fundamental solution can be obtained by superposition of 

eighteen nuclei of strain (see Love [2EO) derived from Kelvin's solution 

(six for each of the three components of the force). Also, the first 

singular solution employed in each load direction is found to be the 

single Kelvin solution presented in expressions (3.3.1) to (3.3.6) for 
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n + r located within the semi-infinite x; ~ 0 • 

0.* / 

3-D. All the other nuclei involve the coordinates of the image of the 

load point with respect to the surface r. This provides satisfaction 

of the traction-free condition over the s~rface of the semi-infinite 

space. Therefore, this class of solutions can be written as 

( )* (3.3.13) 
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where ()k and ()c stand for Kelvin part (expressions (3.3.1) -

(3.3.6) for 3-D and 2-D) and complementary part respectively. 

In what follows, in order to avoid unnecessary repetition, 

only the complementary part of the solutions will be discussed. 

But it" is always implied that the total expressions for the fundamental 

solutions are given by relation (3.3.13). 

The complete set of expressions for the 3-D displacements 

and stresses are presented in Mindlin's paper. In order to obtain 

the plane strain fundamental displacements, the integration procedure 

already demonstrated for the Kelvin problem can be used. Therefore, 

the relevant 3-D complementary displacements required are now presented 

c _ - {8(1-V)2 - (3-4v). (3-4v)Ri - 2ci 
u11 - Kd R + -------~------

R3 

(3.3.14) 

4(1-v) (1-2v) 1 6crl } 
R(R+R1) ,- -;s-

+ 4(1-v) (1-2v) [ r~ l} 
R+R1 1 - R(R+R1) 

where with reference to figure 3.3.2 (i 1, 2, 3) 
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r. = x.(q) - x.(s) 
~ ~ ~ 

R. =x.(q) -x.(s') 
~ ~ ~ 

c = x1 (s) ~ 0 

i = x1 (q) ~ 0 

Kd = 1/ [161f (1-\1) GJ 

(3.3.15) 

Integration of expressions (3.3.14) requires some laborious 

algebraic operations. The integrals involved were computed with the aid 

of reference [81J and are presented in table 3.3.1. Thus, with reference 

to figure 3.3.3, the complementary part of the plane strain displacements 

can be obtained. They are as follows 

+ 4c i Ri } 
RI+ 

{ 
[(3-4\1)r~ + 2c iJ 

u~2 = Kd . - [8(1-\1)2 - (3-4\1)J 1n R + ---~-
R2 

4c ;[ r~ } 

Rif 

(3.3.16) 
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co 

J f(r1 , r 2 , r 3 , ~)dr3 = F(r1 , r 2 , R1) .... 
f F 

R = (RiRi) i ; i=l, 2. 3 R = (RiRi ) i ; i=l, 2 

1 (t) 
2 1n(tJ R 

1 2 -
R3 -

R2 

1 4 1 

RS 3" ;-4 
1 16 1 - IT R6 R7 

1 2R1 [R1) 
1n[i] R+R1 R2 arctan R2 + 2 

1 
2 [R1] R(R+R1~ - - arctan-
R,2 R2 

1 2 2R1 [R1) - + - arctan-
R(R+R1) 2 R2 R3 R2 

2 2 

1 
2 [R1) 

R(R2-R2) 
R"ir arctan R 
122 1 

2R2 

4~ arctan(R1J 
1 

R(R2-R2) 
1 R2 R2 

2R1 
0 

R2_R2 
1 

2R2 
2 2 [aj 1 arctan[~) 1 

R(R2_~)2 R~ + R1R2 R~ - 1 

~ 0 
(R2_R2)2 

1 

t i is replaced by [i - ~J for integration. 

See expression (3.3.11).R 

Table 3.3.1 Some useful integrals. 
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where the notation presented in (3.3.15) is used (i 1, 2) and 

(3.3.17) 

Kd = 1/ [8w (1-\1 )G] 

The stresses corresponding to unit forces acting inside the 

ha1f-p1ane can be taken from Me Ian 's paper [79J. It should be noted 

that while checking Me1an's formulae, a mistake was found in the 

expression for This error does not appear to have been 

corrected in the past and is often repeated in recent publications 

such .as [82J. The correct complementary parts of the stresses (plane 

strain) are given by 

- K r { s 2 

[ -2 - 2 - ( )J (1-2\1) 2 x - 2cx - c + 2xR1 1-2\1 
- --- + ---------------

R2 R4 

- K s 
{ 

(x + 3c)(1-2\1) + 2[R1(r~ + 2c2) - 2cr~ + 2xr~(1-2\1)J 
R2 R4 

(3.3.18) 

(1-2\1) 2[c2 - x2 + 6cx - 2XR1 (1-2\1)J c 
(1112 = - K r { s 2 R2 R4 

+ 
16cx r~ } 

R6 
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- K s 
{ (3x + c)(1-2v) 

R2 

61 

c _ K r {3(1-2V) + 2[r~ - 4cx - 2c2 - 2XRl (1-2V)J 
(1222 2 s R2 R~ 

K = 1/ [4TT(1-v)] s 

The corresponding tractions and strains can be computed 

from (3.3.18) by using the relations 

and 

c p .. 
1J 

(3.3.19) 

(3.3.20) 

(3.3.21) 

For plane stress v is replaced by v in formulae (3.3.16) to 

(3.3.21). From now on this remark will be valid for all the tensors 

related to the different fundamental solutions adopted here. Consequently, 

only plane strain expressions will be shown. 

It is interesting to note that the complementary expressions do 

not present any singularities within the actual region Xl ~ 0 when 

c > 0 (Le., when the load point is located inside Q*). For the case 

when the load point lies at the surface r (c + 0) , it is easily 
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seen that the complementary expressions together with the Kelvin 

solution (see relation (3.3.13», produce the complete solution to 

the problem of Boussinesq-Cerruti [44, 26J in 3-D or Flamant' s problem 

[75, 26J in 2-D. The 3-D case was discussed by Nakaguma I}S] and the 

fundamental displacements and tractions for the 2-D case are as 

follows (s E: r) 

and 

where 

u!l 

utz 

uh 

u~2 

p'*. 
~J 

- K' d { 
- K' d { 
- K' d { 
- K' d { 

2 
TTr 

2(1-v) In r- r2 
,1 } 

(1-2v)6 - r,lr,2 } 
- (1-2v)6 - r,2r ,l 

2 (I-v) In: r- r2 
,2 } 

Kci = 1/{2TTG). 

} 

In addition, the fundamental strains and stresses are given by 

and 

e*J'k~ = :l- { r .r.r - v r . 0J'k } 
L TTGr ,~,J ,k ,~ 

(J~k' J ~ 

The above expressions clearly indicate that as c + 0 the 

(3.3.22) 

(3.3.23) 

(3. 3.24) 

(3.3.25) 

(3.3.26) 

half-plane fundamental solution still produces singularities of the same 

order as the corresponding Kelvin fundamental solution. the same 

argument is valid for 3-D [25J. It is important to note that the 
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traction-free condition over the surface of the half-plane is now 

provided by the occurrence of or/on in expression (3.3.23) (i.e., 

or/on = 0 for s, q £ f) . 

Once the fundamental solutions have been presented, Somigliana's 

identity can be obtained by following a more formal procedure. Recalling 

the integral statement (3.2.1), one can always write 

~.(s, q) € .. (q) dn(q) 
1.J 1.J J 

r. 
€ 

a .. (q) €*.(s, q) dn(q) 
1.J 1.J 

(3.3.27) 

where n€ is the domain that arises from n by removing a ball of 

radius € and surface r centred at the load (singular) point s (see 
€ 

figure 3.3.4». 

Within n the tensors corresponding to the fundamental solution 
€ 

are never singular (s ff/. n ). 
€ 

Consequently, assuming that € •• (q) 
1.J 

and 

a .. (q) are both continuous and bounded for any point q £ n , integrating 
1.J 

by parts as before leads to 

f 
r+r 

€ 

p*(s, Q) u.(Q) dr(Q) 
1. 1. J 

r+r 
€ 

u*(s, Q) p.(Q) dr(Q) 
1. 1. 

+ J u!(s, q) bi(q) dn(q) 

n 
€ 

(3.3.28) 

Considering now the integrals defined over f ,one can easily 
€ 

verify that 

o • (3.3.29) 
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r 

Fig. 3.3.4 Singular point s removed from 0 by an 
auxiliary spherical boundary. 

The same can not be said for the first boundary integral in equation 

(3.3.28). The corresponding r integral can be written as follows 
£ 

f pt(s. Q) ui(Q) dr(Q) 

r 
£ 

f pt(s. Q) CUi (Q) - ui (s)J dr(Q) 

r 
£ 

pHs, Q) dr(Q) 
~ 

where from the assumption of continuity of u.(q) one gets 
~ 

r 
£ 

(3.3.30) 

(3.3.31) 



www.manaraa.com

66 

The last integral in (3.3.30) can be computed from a starting 

assumption. Since the fundamental solutions correspond to unit point 

loads applied at s, it is readily seen that 

J p!(s, Q) dr(Q) 

r 
e: 

which leads to 

r 
£ 

p~. (s, Q) dr(Q) 
1J 

ui(s) f pt(s, Q) dr(Q) 

r 

ui(s)Pi • 

e: 

o .. P. 
1J J 

(3.3.32)· 

(3.3.33) 

Expression (3.3.33) is independent of the radius e: and can obviously 

be verified by analytical integration of the different fundamental 

solutions. 

From the above it is seen that by taking the limit as e: + 0 

and considering each of the P. terms to act independently, Somig1iana's 
1 

identity for displacements is obtained in the form of equation (3.2.7). 

3.4 Stresses at Internal Points 

Equation (3.2.7) is a continuous representation of displacements 

at any point s £ n. Consequently, the stress state at this point can 

be obtained by combining the derivatives of eqn. (3.2.7) with respect 

to the coordinates of s to produce the strain tensor and then 

substituting the result into Hooke's law (see Chapter 2, equations (2.2.21) 

and (2.2.27». The final expression is as follows 

cr •• (s) 
1J f Uljk(s, Q) Pk(Q) dr(Q) - f ptjk(s, Q) ~(Q) dr(Q) 

r r 

+ f Uljk(s, q) bk(q) dn(q) 

n 

(3.4.1) 
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Note that differentiation was carried out directly inside the integrals. 

This is obviously possible for the boundary integrals, but the body 

force term needs a proper proof. This matter will be taken up in 

Chapter 4 where the inelastic formulation is presented and a strong 

demonstration of the validity of this procedure will be discussed. 

For the Kelvin fundamental solution, the new tensors are written 

as 

(3.4.2) 

+ v(6· kr . + 6· kr .) - yr .r .r kJ 
1 ,J J ,1 .1 ,J , 

+ av(n.r .r k + n.r .r k) + 
1 ,J. J ,1 , 

(3.4.3) 

(l-2v) (a~r .r . + n.6· k + n1.6J•k) 
it ,1 ,J J 1 

where a = 2, 1 ; a = 3, 2 y 5, 4 for 3-D and 2-D respectively. 

Note that the substitution 

i)r 
ax:1SJ = 

1 

- r . 
,1 

i)r = - ax:TCi) 
1 

(3.4.4) 

was already effectuated. 

The complementary expressions for the tensors corresponding to 

the half-plane fundamental solution are obtained by 
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c uijk = G [ aU~k + aujk] 
ax. ax. 

J ~ 

(3.4.5) 

and 

(3.4.6) 

where the above derivatives are taken with reference to the coordinates 

of the load point. These derivatives are listed below for completeness 

c 
aU 12 Kd { 
-- = -- r 4(1-v) (1-2v) - (3-4v) 
aX l R2 2 

+ [4x(2c+x) - 2(3-4v)Rl r 11_ l6cxRf } 

R2 R4 

c 
aU2l Kd { ---- = -- r2 - (3-4v) - 4(1-v) (1-2v) aXl R2 

[2(3-4v)Rl r l + 4x(2c+x)] l6CXRf} 
+---

R2 R4 

[4~r~ + 2Rl«3-4v)r~ + 2ci)J+ l6CiRlr~} 
R2 R4 

(3.4.7) 
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(3.4.7) cont. 

2 [(3-4\)r~ + 6c~J 
+ -----...;;..---

R2 

aa~l1 K { 2 [2c~ + R1 (3R1 + 2i - (3i+c) (1-2\))] 
-- = - ...!!.. (1-2\) + ----....;:;..-...,;;.--------

dX1 R2 R2 

8 [2cir~ + R1 (R1 (Rl +2ci) + 4xr~\) ] + 96ciRtr~ } 

R~ R6 

aa~21 K { 2[2c2 - r~ + R1(4c - (x+3c)(1-2\))] 
-- = -...!!.. 3 (1-2\) + ---.-..;;;....----------aX1 R2 R2 

+ 8[r~(2ci + Ri - 2iR1 (1-2\)) - 2c2RiJ _ 96ciRir~ } 

R~ R6 

(3.4.8) 
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a0 1l2 --= 

70 

K 
- R: r2 { 2(2~ - R1 ) (1-2'J) - 4(c + 3~) 

+ 8[2~r~ + Rl (6c~ - 2~1 (I-Zv)+ C2 - i2)] _ 96ciRlr~ } 

R2 Rlf 

c 
ad222 K { - --- - - 2. r 2 4v(3R1 + 2x) - 2(7R1 + 2x) 

aX1 - Rlf 

+ 8R1 [4iR1 (I-v) + 8ci - r~ + 2c2] _ 96ciRi } 

R2 Rlf 

aO~ll Ks {_ 4 [?Rl (Rt + 6ci) - 4ir~ (1-2v)] 
-- = - - r 2(7x + c) (1-2v) + ------------

aX2 Rlf 2 R2 

(3.4.8) cont. 

2 [x2 - 2ci - c 2 + (1-2v) (r~ + 2iR1)] 

R2 

+ 8[r~(i2 - 2cx - c 2 {- 2iR1 (1-2v)) - 2ciRiJ+ 96CiRfri} 

Rlf R6 

8lRl (r Z + 2c 2 - 4ci) - 2cr f + 2ir ~(1-2 v) J 96ciR1 r ~ } 
+ + -------

R2 Rlf 



www.manaraa.com

71 

- KS r {2(3i + c) (1-2v) - 4Rl 
RIt- 2 

8Rl [6ci + ri - 2iRl (l-2v)] 

+ -------------------------

- 2 96cxRl r 2 } 

R4 

(3.4.8) cont. 

It should be noticed that equation (3.4.1) can be further modified 

when the half-plane fundamental solution is used. This will be discussed 

in the section that follows. 

3.5 Boundary Integral Equation 

In the preceeding sections the derivation of Somigliana's 

identity has been presented without need for distinction between the 

different fundamental solutions employed. In this section, however, it 

is instructive to consider first the Kelvin solution and then extend 

the complete formulation to half-space type problems where full advantage 

of the traction-free condition can be taken. 

Considering the Kelvin case, Somigliana's identity is not 

satisfactory for obtaining solutions unless the boundary displacements 

and tractions are known throughout the boundary r (body forces are 

always assumed to be prescribed). Therefore it is interesting to 
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Fig. 3.5.1 Singular point S removed from r by 
part of a spherical boundary. 

examine the limiting form of equation (3.3.28) as s + S(S Eras 

conventioned in eqn.(3.2.7». Assuming that the body can be represented as 

shown in figure 3.5.1, this limiting form can be written as follows [24J 

J p*.(S, Q) u.(Q) dr(Q) 
1.J J f u*. (S, 

1.J 
Q) p. (Q) dr(Q) 

J 
r-r +r r-r +r (3.5.1) £ £ £ Ii: 

+ J u*. (S, 
1.J 

q) b. (q) dr(q) 
J 

n 
£ 

where the assumption that each Pi is acting independently was already made. 

Let us now study separately the limit of each integral in 

(3.5.1) as £ + O. The first integral can be written as 

lim 
£+0 

J _ 
r-r +r 

£ £ 

p~.(S, Q) u.(Q) dr(Q) 
1.J J 

= lim f p*.(S, Q) u.(Q) dr(Q) 
£+0 1.J J 

r (3.5.2) 

+ lim £f p*.(S, Q) u.(Q) dr(Q) 
£+0) 1.J J 

r-r 
£ 

where from the first integral on the right-hand-side comes 
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lim f p~.(S, Q) u.(Q) dr(Q) 
€"+O _ l.J J 

Q)[u.(Q) - u.(S)]dr(Q) 
J J 

r 
g 

F g 

p'*. (S, Q) dr(Q) 
l.J } 

Clearly, the first integral on the right of (3.5.3) vanishes from 

(3.5.3) 

the condition of continuity of u. (Q) 
J 

and the second integral allows 

for the representation 

C .• (S) 
l.J lim J 

g-+O _ 
r 

g 

p~.(S, Q) dr(Q) 
l.J 

(3.5.4) 

Going back to expression (3.5.2), the second integral on the 

right-band-side is seen to be taken in the Cauchy principal value sense 

[28J. The remaining integrals in expression (3.5.1) present no special 

singularities and can be interpreted in the normal se~se of integration. 

Therefore, as g ~ 0 , the following equation arises 

C .. (S) u.(S) + f p'*.(S, Q) u.(Q) dr(Q) 
l.J J l.J J f u~.(S, Q) p.(Q) d~(Q) 

l.J J 
r r (3.5.5) 

u~.(S, q) b.(q) dn(q) 
l.J J 

where the integral on the left-band-side is to be interpreted in the 

sense of Cauchy principal value. 

Equation (3.5.5) is valid for 3-D or 2-D, it provides a relation 

that must be satisfied between surface displacements, surface tractions 

and body forces in an elastic body. Taking into consideration that the 

body force term is always known, when boundary conditions are prescribed 

this equation becomes a boundary integral equation for the unknown boundary 

data. This important feature is the one tbat makes it most attractive 

and can be fully explored for numerical solutions. 
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Fig. 3;5.2 Body with part of its boundary r coinciding 
with the surface of the semi-infinite space. 

The coefficient C •• (S) 
1J 

was defined in (3.5.4). If the tangent 

plane at S is continuous, C .. (S) = & .. /2 but if this is not the case, 
1J 1J 

closed form expressions for this coefficient have been presented in 

references [7, 83J for 2-D and 3-D. For practical applications. 

however, it will be seen later that C •• 
1J 

together with the corresponding 

principal value can be indirectly computed by applying equation (3.5.5) 

to represent rigid body movements. 

Equation (3.5.5) is the starting equation for the boundary element 

technique using the Kelvin fundamental solution. For half-space type 

solutions, it is interesting to start by reviewing Somigliana's identity 

to point out an important simplification in this equation which was 

not mentioned before. If the body that is being analysed presents part 

of its boundary coinciding with the surface of the semi-infinite space 

f (see figure 3.5.2), the integral over this part which involves 

ptj vanishes identically because of the traction-free condition 

included into the fundamental solution. Consequently, Somigliana's 
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identity can be rewritten as follows (3-D or 2-D) 

ui(s) f u~.(s, Q) p.(Q) dr(Q) - f p~.(s, Q) u.(Q) dr(Q) 
~J J ~J J 

r r' (3.5.6) 

+ J u~.(s, q) b.(q) dn(q) 
~J J 

n 

where r' represents the part of r in which xl > 0 . 

In addition, equation (3.5.6) can also be specialised for load 

points located on the surface of the half-space r - r' without any 

further modification. This is because when c = 0 the singularity 

which occurs in the first integral on the right-hand-side of (3.5.6) 

can be integrated in the usual sense. Furthermore, if the problem to 

be analysed satisfies the traction-free condition (p.(Q) = 0) over 
J 

some part of r - r' , this weak singularity is also removed, allowing 

for load points along such part of the boundary to be considered as 

internal points. 

As it will be seen later, the above described characteristic of 

the half-space formulation plays an important role in its application to 

the boundary element method. 

Due to the non-singular nature of the complementary expressions 

(see formulae (3.3.16) -(3.3.20», specialisation of equation (3.5.6) 

for load points located along the boundary r' creates exactly the same 

singularities obtained for the single Kelvin formulation. Therefore, 

the following equation is obtained 

c .. (S) u.(S) + f 
~J J 

r' 

p~.(S, Q) u.(Q) dr(Q) 
~J J 

(3.5.7) 

f 
r 

u~.(S, Q) p.(Q) dr(Q) + 
~J J J u~.(S, q) b.(q) dn(q) 

~J J 
n 
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in which the integral on the left-hand-side is to be interpreted in the 

Cauchy principal value sense and the expression of C •• (S) 
l.J 

corresponds 

only to the Kelvin part of the fundamental solution. Hence, Coo = 6 •• /2 
l.J l.J 

on smooth surfaces and can be taken from other references otherwise 

[7, 83]. 

The special case when the load point is located at the intersection 

of r' and r can also be handled by equation (3.5.7). However, 

in this case limiting relations are involved resulting in a different 

expression for Coo • 
l.J 

This exception does not create any difficulty 

and the proper expression for C .. can be obtained by applying equation 
l.J 

(3.5.7) to rep~esent rigid body movements. 

In conclusion, equation (3.5.7) can in general be quoted as 

representing the specialisation of (3.5.6) for any boundary load point 

if C •• 
l.J 

6 .. when referring to the boundary r - r' • 
l.J 

Following the procedure presented in Section 3.4, the 

derivatives of equation (3.5.6) with respect to the coordinates of the 

load point can be combined with Hooke's law to obtain a particular 

version of equation (3.4.1) 

°ij(s) = J u!jk(s, Q) Pk(Q) dr(Q) 
r 

-J P!jk(s, Q) uk(Q) dr(Q) 

+ J'U!jk(S, q) bj(q) dO(q) • 

o 

(3.5.8) 

Note that if the problem to be analysed satisfies the traction free' 

condition Pk(Q) = 0 over some part of the boundary r - r' , 

stresses at boundary points located on this part of the boundary 

can also be computed by equation (3.5.8). In this case s is 

replaced by S in the above equation on condition that S £ traction 

free part of r - r' • 
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Although body forces have been considered in the equations 

presented so far, in the following sections this term will not be 

included for simplicity. However, it is worth mentioning that the 

domain integral involved can be avoided in many practical cases by 

using some alternative procedures. Lachat and Watson (23], for 

instance, use superposition with a particular solution which includes 

only the body force term. A more interesting procedure is presented 

by Rizzo and Shippy [84] where the possibility of transforming the 

body force integral into a surface integral is presented. This 

procedure is applicable to some of the most common types of body forces, 

such as constant gravitational load, centrifugal load due to a fixed 

axis of rotation and the effect of a steady-state temperature 

distribution. A unified procedure for such cases (3-D and 2-D) 

has been recently presented by Danson [85], in which the Ga1erkin 

vector corresponding to the fundamental solution is employed. 

3.6 Infinite and Semi-Infinite Regions 

Throughout the derivations presented in this chapter, bounded 

bodies were always considered. In this section the validity of the 

previous expressions (Kelvin fundamental solution) will be extended 

to external problems in infinite regular regions. As before, we 

borrow this concept from Kellogg [31]. Thus, infinite regular region 

means a region bounded by a regular surface (hence a bounded surface), 

and containing all sufficiently distant points. In addition, the same 

extension will be seen applicable to problems related to the semi

infinite space with or without cavities. Consequently, the ideas will 

be generalized to include such cases. 
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The extension of equation (3.5.5) to infinite regular regions 

is not valid without further hypotheses on the functions involved. 

Such hypotheses are concerned with the behaviour of the functions 

on an infinitely distant surface and are referred to as regularity 

conditions. 

Let p be the radius of a sphere of surface r 
p 

and centred 

at S, which encloses the cavity (or cavities) of the external 

problem depicted in figure 3.6.1. 

Equation (3.5.5) can be written for the region within rand 

r as follows 
p 

C •• (S) u. (S) 
~J J 

u~.(S, Q) p.(Q) dr(Q) + 
~J J 

p*.(S. Q) u.(Q) dr(Q) 
~J J 

(3.6.1) 

Clearly, if the limiting case p + 00 is considered, equation 

(3.6.1) can be expressed in terms of boundary integrals over r alone 

if 

lim f 
p+oo r 

p 

[p~.(S, Q) u.(Q) - u~.(S, Q) p.(Q)] dr(Q) 
~J J ~J J 

For 3-D problems, one has (Q £ rp) 

dr(Q) 

u~. (S, Q) 
~J 

p~.(S, Q) 
~J 

o • (3.6.2) 

(3.6.3) 
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Fig. 3.6.1 Infinite region with cavity. 

r S 

Fig. 3.6.2 Semi-infinite region with or without cavities. 
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where O() represents the asymptotic behaviour as p + 00 • 

Therefore, if at most u. (Q) 
J 

and have the behaviour 

p-1 and -2 P at infinity, the regularity conditions (3.6.2) are 

satisfied. Notice that if the total load applied over the boundary 

of the cavity is not self equilibrated, Saint-Venant's principle 

[68] gives that u. (Q) 
J 

and will behave like the fundamental 

solution corresponding to a concentrated force in the direction of 

the resultant load. Thus, 
-1 

u. (Q) = O(p ) 
J 

-2 and p. (Q) = O(p ) 
J 

are obtained and they ensure that each term of (3.6.2) vanishes 

separately from the other. 

For 2-D problems, the equivalent of (3.6.3) is given by 

dr(Q) IJI dcp with IJI 

1 O(1n(,) + 1), i 
u!j (S, Q) 

0(1) , i " j; 
-1 

p>'s.(S, Q) = O(p ) • 
1J 

O(p) ; 

j; 

(3.6.4) 

From the above it is seen that in order to guarantee that each 

term of (3.6.2) vanishes separately, one needs 
-1 

u.(Q)=O(p) 
J 

and 

p.(Q) = 0(p-2) as before [3]. This case however, does not correspond 
J 

to the behaviour of the fundamental solution at infinity. Based on the 

same argument as for 3-D, one can substitute u.(Q) 
J 

and by 

the tensors corresponding to the 2-D fundamental solution and indeed 

verify that equation (3.6.2) is satisfied. The only difference now 

is that the two terms do not approach zero separately, but they cancel 

each other as p + 00 • 
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The above discussion strongly suggests that the regularity 

conditions are always satisfied if ui(Q) and Pi(Q) behave at 

most like the corresponding fundamental solution at infinity. This 

statement is also verified for semi-infinite problems where the half-

space and half-plane fundamental solutions dictate the corresponding 

conditions. In these applications, the interesting case in which part 

of the boundary F is loaded - e.g. figure 3.6.2 - can also be 

included. 

In conclusion, provided the regularity conditions are satisfied, 

problems of cavities in the external region can be represented by 

(see figure 3.6.1). 

C .. (S) u.(S) + J p*.(S, Q) u.(Q) dr(Q) 
1.J J 1.J J 

r 

f u*j'(S, Q) p.(Q) dr(Q) 1. J . 

(3.6.5 ) 

r 

for infinite regions (Kelvin), and also 

C .• (S) u. (S) + 
1.J J f p*.(S, Q) u.(Q) dr(Q) = 

1.J J 
r' 

f 
(3.6.6) 

u*. (S, Q) p. (Q) dr(Q) 
1.J J 

r 

for semi-infinite regions which may have a loaded boundary r - r' 

(see figure 3.6.2). 

The conclusions reached in this section are obviously valid 

for Somigliana's identity and also guarantee stronger regularity in 

the expressions for stresses at internal points. Note that for an 

external cavity problem the integral equations are of the same form 

as for the internal region counterpar~, the difference being given by 
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the normal n which is taken as pointing into the cavity. 

3.7 Numerical Implementation 

In this section a general numerical procedure for the solution 

of boundary value problems in solid mechanics will be described. 

In order to concentrate the attention to the main aspects of the process, 

the different forms of boundary integral equation intrmduced in the 

previous sections will be represented in a unified manner as follows 

(body forces are omitted for simplicity) 

Cij(S) uj(S) + J ptj(S, Q) uj(Q) dr(Q) 

r 
J u*.(S, Q) p.(Q) dr(Q) 

1J J 
r 

where depending on the fundamental solution employed (infinite or 

(3.7.1) 

semi-infinite space) the appropriate expression for C .. (S) 
1J 

and the 

substitution of r by r' in the first integral are implied. 

Instead of attempting closed form solutions to equation (3.7.1), 

which is a difficult task and only attainable for simple geometries 

and boundary conditions, a suitable numerical approach is here 

employed. The basic steps involved in this approach constitute the 

numerical essence of the boundary element technique (see [1 - 4J), 

they are summarized below : 

(a) The boundary r is discretized into a series of elements 

over which displacements and tractions are chosen to be 

piecewise interpolated between the element nodal points; 

(b) Equation (3.7.1) is applied in discretized form to each 

nodal point S of the boundary r and the integrals 

are computed (usually by a numerical quadrature scheme) 
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over each boundary element. A system of N linear algebraic 

equations involving the set of N nodal tractions and N 

nodal displacements is therefore obtained; 

(c) Boundary conditions are imposed and consequently N nodal 

values (traction or displacement in each direction per node) 

are prescribed. The system of N equations can therefore 

be solved by standard methods to obtain the remaining boundary 

data. 

Values of displacements and stresses at any selected internal 

point s can readily be computed by numerical quadrature using the 

appropriate equations (i.e. eqns. (3.2.7) and (3.4.1) or eqns. (3.5.6) 

and (3.5.8» also in discretized fashion. Note that non-zero body 

forces can be included by a simple numerical integration scheme. which 

leads to an additional contribution to the independent term of the 

system of equations. and a similar contribution to the internal 

displacements and stresses. 

In what follows each of the above steps will be more closely 

examined for the two dimensional case, but the generalization to three 

dimensional problems is straightforward. 

For the discretization of equation (3.7.1). the boundary r 

is approximated by using a series of elements. The Cartesian coordinates 

x(j) of points located within each element r. 
J 

are expressed in terms 

of interpolation functions M and the nodal coordinates x(m) of the 

element by the following matrix relation 

~ ~(m) (3.7.2) 
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In a similar way. boundary displacements and tractions are 

approximated over each element through interpolation functions ~ 

(3.7.3) 

where u(n) and (n) 
p contain the nodal displacements and tractions 

respectively. Note that the superscript m in equation (3.7.2) refers 

to the number of boundary points required to define the geometry of 

each boundary element whereas the superscript n in (3.7.3) refers 

to the number of boundary nodes to which the nodal values of displacements 

and tractions are associated. These numbers may be different in general. 

Assuming that the boundary r is discretized into L elements 

r •• the substitution of (3.7.3) into eqn. (3.7.1) leads to 
J 

C(S.) u(S.) + 
- 1 - 1 

for a boundary node 

L 

L 
j=l 

S. • 
1 

L 

L 
j=l [J r. 

J 

(n) 
~ 

(3.7.4) 

Since the two dimensional interpolation functions N are usually 

expressed in terms of the homogeneous coordinate n • it is necessary 

to transform the element of surface dr from the global Cartesian 

system (see eqn. 3.7.2) to this intrinsic system of coordinates 

(3.7.5) 

where the Jacobian of the transformation is given by 

(3.7.6) 
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In simple cases, the integrals presented in equation (3.7.4) 

can be computed analytically. In general, however.numerica1 

integration schemes often lead to a more efficient procedure and can 

be applied to higher order interpolation functions without any 

difficulty. The special case when a singular node Si lies on the 

element requires some additional care and this will be dealt with 

later on. For the normal cases when S. f/. r. , the integrals in 
1. J 

(3.7.4) can readily be replaced by summations of the form 

f 
f 1 p* 

K 

~* ~ dr N IJI dn L 1J1k l~k (~* ~)k 
k=l r. -1 (3.7.7) J 

f 
f1 ~* ~ 

K 
u* N dr IJI dn L 1J1k Wk (1;,!* ~)k 

k=l r. -1 J 

where K is the number of Gaussian type integration points and Wk 

is the weighting factor associated with them. 

From the application of equation (3.7.4) to all NN boundary 

nodes, a final system of 2NN equations arises 

(3.7.8) 

where vectors y and p contain all displacements and tractions at 

the boundary nodes and the quasi-diagonal matrix ~ can be incorporated 

" into H to form a matrix ~ Thus, 

Hu ~ p (3.7.9) 

It should be noticed that for the total computation of matrix 

~ , the leading diagonal submatrices which correspond to the free 

term C .. plus the principal value integral (see eqns. (3.5.5) and 
1.J 

(3.5.7» can be calculated by imposing to eqn. (3.7.9) the condition 
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that rigid body translations result in zero tractions. Therefore, 

considering finite regions, two independent translations [22] such as 

ui = 6il and ui = 6i2 can be applied, resulting in the following 

relation 

H u 0 
~pq ~q 

(p, q I, 2, ..... ,NN) (3.7.10) 

in which H represents the 2 x 2 submatrices of H and ~q is 
~pq 

readily substituted by 

u 
~q 

I (q I, 2, .... ,NN) (3.7.11) 

where I is the identity matrix of order 2. 

Equation (3.7.10) allows for the computation of the leading 

diagonal submatrices of H in the form (summation not implied) 

H 
~aa 

NN 

L 
q=l 
q;'a 

H 
~aq 

(a I, 2, ..... ,NN) (3.7.12) 

Expression (3.7.12) is valid for finite bodies, for infinite 

or semi-infinite regions, however, a further term must be added. With 

reference to Section 3.6, one can readily verify that since u 0(1), 
~q 

the regularity conditions at infinity are no longer satisfied. 

Consequently. the following expression has to be considered in such 

cases 

u. + u. 
J J f p*.(S. Q) dr(Q) + lim u. f 

1J p__ J 
r rp 

o 

where u. corresponds to any rigid body translation and S ~ r • 
J 

(3.7.13) 
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As discussed before (see Section 3.2), since the tensor 

p*.(S, Q) corresponds to a positive unit point load applied in i 
1.J 

directioll, the condition of equilibrium within the region n* + r* 

leads to 

lim J 
p"- r 

p 

p*. (S, Q) dr(Q) 
1.J 

- 0 •• 
1.J 

(3.7.14) 

in which r is the boundary of a circular region for the infinite 
p 

space (2-D Kelvin fundamental solution) or a semi-circular region for 

the semi-infinite :,pace (half-plane fundamental solution). 

Substituting expression (3.7.14) into (3.7.13) for the rigid 

body translations employed in equation (3.7.10), and discretizing 

gives (summation not implied) 

NN 
1_ - \' H L. -ctq 

q=l 
(ct I, 2 •••••• NN) (3.7.15) 

q"ct 

Expressions (3.7.12) and (3.7.15) provide useful means of 

computing the leading diagonal submatrices of ~. avoiding analytical 

evaluation of the coefficients and the principal value integrals. 

By applying the 2NN specified boundary conditions. equation 

(3.7.9) can be reordered and the final system of equations arises 

f (3.7.16) 

where A is a fully populated matrix of order 2NN. vector y is 

formed by the unknown displacements and tractions and the contribution 

of the prescribed values is included into vector f 
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It should be pointed out that for computational purposes, the 

assemble of matrix ~ is performed directly from the element integrals, 

without actually forming matrices Hand G In addition, symmetric 

bodies under symmetric loads can be considered without discretization 

of the symmetry axes [7]. This is accpmp1ished by an automatic conden

sation process which integrates over reflected elements and performs 

the final assemble of matrix A already in reduced size. 

Once that nodal values of boundary displacements and tractions 

are known, internal displacements and stresses can be computed by the 

corresponding equations also in discretized form. Here, since there 

are no singular integrals to be computed, simple standard numerical 

quadrature schemes can be used throughout. 

It is interesting to note that the use of a ha1f-p1ane 

fundamental solution renders the discretization of the traction-free 

part of the boundary Xl = 0 unnecessary; the displacements and 

stresses along this part of the surface be~ng computed as internal 

points. This feature, apart f~om generating a smaller system of 

equations, avoids any numerical approximation over the free-surface. 

Therefore, semi-infinite or finite sized problems can be handled with 

equal ease. 

Among the different types of elements that can be employed 

in the numerical discretization of the integral equations [2,24], 

the linear element has been found to give acceptable accuracy without 

requiring much computer effort for the solution of the examples 

presented here. Henceforth, the numerical implementation of this 

element will be discussed in more detail. The geometry of the element 

is represented by a straight line and with reference to figure 3.7.1, 
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iJi = ~/2. Also, the relevant matrices of equations (3.7.2) and 

(3.7.3) are given by 

M=N (3.7.17) 

where and the corresponding vectors 

(n) d (n) f d b b t [i ( ) 1 i ( ) 2 IT for each node u an pare orme y su vec ors 

i = 1,2 located at the extremities of the element (see figure 3.7.1). 

From the above it is seen that the integrals presented in 

equation (3.7.4) give rise to two element matrices hand g 

(corresponding to Hand G respectively) of order 2 x 4 in the 

following form 

h ~r [p* N p* N2] dn - 1 
-1 

~ fl 
(3.7.18) 

~ [u* N u* N21 dn - 1 
-1 

which allows for numerical integration as shown in (3.7.7). 

For the special case of the singular node being coincident 

with one of the end nodes of the element, the coefficients of matrix 

g can be computed analytically to avoid more sophisticated numerical 

integration schemes. Considering the Kelvin fundamental solution, 

the following expression is obtained 

(3.7.19) 

(i, j, k, n = I, 2) 

where the subscripts i and j indicate the position of the coefficient 

in the 2 x 2 submatrix k of g and n indicates the singular 

node. Also, 
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TJ = 1 

TJ = ~ 
l 

TJ = -1 

1 

Fig. 3.7.1 Linear element and definition of intrinsic 
coordinate n. 

3 - 4v 

1/ [167T (l-V)G] (3.7.20) 

Since the 'complementary tensors of the half-plane fundamental 

solution are non-singular when c f 0 , expression (3.7.19) can be 

used for the singular part of the integrals, while the remaining part 

is integrated numerically. For the case when c = 0 , both parts 

added up (see (3.3.22)) for integration and the resulting expression 

is given by 

(3.7.21) 

where 
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2(1-\1) 

1/ (411G) 

1 - 2 \I (3.7.22) 

arc tan (R./ \) (-n/2 ~ e ~ n/2) 

r: for j 1 

for j 2 
a. 

For the computation of displacements at internal points, each 

element contributes with two matrices hand g of the form presented 

in (3.7.18). The same pattern is valid for internal stresses, where 

the corresponding element matrices h' and g' are now 3 x 4 In 

this case, the 2 x 2 matrices p* and u* are substituted by their 

counterparts 'p* and 'u* which are of order 3 x 2 . Note that 

only the three different components of stress are compu ted and the 

sequence chosen here is °U' °l2 and °22 

With reference to the numerical integrals, four Gauss points 

have been found to produce acceptable precision in many cases. This 

number, however, can be increased to six if the element is located 

very near to the singular node or internal point. 

In order to simulate properly traction discontinuities over 

the boundary, the concept of double nodes has been adopted here. This 

consists of having two boundary nodes with exactly the same coordinates 

without any boundary element in between. Such procedure has been 

thoroughly discussed in a previous paper by the present author and 

colleagues [86], and the reader is referred to it for further explanations. 

The only limitation of this concept is when both nodes have a displace

ment component in the same direction prescribed as a boundary condition. 
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This generates a singular matrix A (such possipility would violate 

the displacement continuity condition). Nevertheless, all the other 

combinations are possible. 

An alternative procedure capable of handling the special case 

mentioned above has been proposed by Chaudonneret [87]. 

Finally, it should be noted that stresses at boundary nodes 

can easily be computed by using the values of the interpolated 

displacements and tractions over the boundary elements. Such procedure 

does not require any integration and is presented in Appendix B for 

the inelastic case. The expressions are valid for elastic problems 

if one makes - ~~. = 0 and substitutes the rates by the corresponding 
~J 

accumulated values of the variables. 

3.8 Examples - Half-Plane Formulation 

Applications of the Kelvin formulation described here have 

been reported by the present author and co-workers in references 

[86, 88J. In these papers, boundary element solutions for a series of 

examples are discussed and compared with analytical and finite element 

results. Among the applications, the practical problem of the stress 

analysis of a dam is presented and discussed in conjunction with 

finite element results for the same problem. Not only here, but in 

all the examples the boundary element technique was found to produce 

accurate and efficient solutions. 

Herein, in order to save space, we shall restrict ourselves to 

the original aspects of the present work. Therefore, to outline the _ 

applicability of the elastic formulation, some examples solved by the 

half-plane implementation are compared with analytical results in what 

follows. 
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Example 3.8.1- The first example consists of a linear traction 

distribution over a finite part of the boundary of a semi-infinite 

medium (figure 3.8.1). The problem was solved by discretizing the 

loaded part of the surface using two boundary elements only and 

results were computed at five internal points. 

Analytical results to this problem were presented in [82] and 

are here compared in tables 3.8.1 and 3.8.2. Due to the well known 

non-uniqueness of displacements in two dimensional ana1ysis,the 

vertical displacements are given with reference to the corresponding 

displacement of node 2. 

Node u-2u v 

1 -4.476 -10.400 

2 O. 5.200 B.E.M. 

3 -27.649 10.400 

1 -4.476 -10.400 

2 O. 5.200 EXACT 

3 -27.649 10.400 

m x 102 

Table 3.8.1 Linear traction distribution problem. 
Displacements at boundary nodes. 
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Point u-2u v cr cr cr x y xy 

4 -6.251 -0.768 -959.48 -450.18 225.09 

5 -16.429 0.217 ..,514.78 -388.96 260.13 

6 -31.022 10.400 O. O. O. B.E.M • 

7 . -8.394 -0.430 -894.86 -511.73 -487.48 

8 -14.719 -10.400 O. O. o. 

4 -6.251 -0.768 -959.48 -450.18 225.09 

5 -16.429 0.217 -514.78 -388.96 260.13 

6 -31.022 10.400 O. O. O. 
EXACT 

7 -8.394 -0.430 -894.86 -511.73 -487.48 

8 -14.719 -10.400 O. O. O. 

m x 102 kN/m2 

Table 3.8.2 Linear traction distribution problem. 
Results at internal points. 

Note that the exact agreement of the results is to be expected. 

Although linear interpolation functions are not exact for the boundary 

displacements, their contribution is removed from the analysis by the 

very nature of the fundamental solution. 

Example 3.8.2 - The next classical example is a rigid flat punch 

indented into the ha1f-p1ane. The punch is considered to be perfectly 

smooth and indentation was carried out by prescribing the flat punch 

displacements. Boundary element analysis was performed by discretizing 

half of the contact surface into twelve unequally sized boundary elements. 

The thirteen boundary nodes were located.a1ong the discretized boundary 

according to the formula, 

y = 6.5(1-a) 
a 
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where a is the node number. 

Additional results were obtained at four internal points 

(see figure 3.8.2a). Note that as discussed in Section 3.7, symmetry 

was considered by a direct condensation process which automatically 

integrates over reflected elements not requiring any boundary 

discretization of the symmetry axis. 

Contact stresses along t~e discretized boundary are compared 

with analytical results [82] in figure 3.8.2b. Apart from some 

traction perturbation over the tiny element connected to node thirteen, 

the singularity at the edge of the punch does not seem to have 

disturbed the results. This is also confirmed by the accuracy of 

the computations at internal points presented in Table 3.8.3. 

u>oint u-1u v 0 0 0 

14 

15 

16 

17 

14 

15 

16 

17 

x y xy 

-0.724 O. -133.92 -89.28 O. 

-0.826 -1.210 -330.64 -ll3.l6 107.93 

-1.824 -2.038 o. O. O. 

-0.908 -0.234 -151.87 -77.69 -3.14 

-0.735 o. -133.91 -89.27 O. 

-0.842 -1.208 -326.47 -ll4.43 llO.50 

-1.841 -2.038 O. O. O. 

-0.917 -0.234 -152.00 -77.67 -3.35 

m x 102 kN/m2 

Table 3.8.3 Smooth punch problem. Results at 
internal points. 

B.E.M. 

EXACT 
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Example 3.8.3 - In the third application of the formulation a 

semi-infinite plate with a circular hole near the straight boundary 

is studied. The problem is here considered under two different loading 

cases, unit normal pressure applied over the surface of the hole and 

simple tension a parallel to the straight edge. 
y 

In both cases, the 

stress a along the traction-free straight boundary is compared with 
y 

analytical results presented by Jeffery [89] and Mindlin [90] respectively. 

The relatively small distance between the centre of the hole 

and the straight surface is 1.34 times the radius of the circle. For 

the boundary element analysis only the surface of the hole needs 

discretization and due to symmetry only half of this surface was 

considered. 

Results for the first loading case (see figure 3.8.3) were 

computed at a series of points (considered as internal points) 

located along the straight boundary and 24 boundary elements of equal 

size were used to represent half the circle with the same area. 

The second loading case was analysed by simple superposition; 

tractions Py equal to the scalar product of the simple tension and 

the unit normal to the surface of the hole were applied to the circular 

boundary and the corresponding results superimposed onto the constant 

stress field a 
y 

To illustrate the convergence of the method the results for 

6, 12 and 24 boundary element discretizations of the half circle are 

compared with analytical results in figure 3.8.4. 

It is worth mentioning that if the distance between the hole 
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and the straight edge were larger, fewer boundary elements would be 

required for the same accuracy of results. With reference to the 

first loading case, for d/r' = 1.81, 12 boundary elements produced 

an error at the peak stress of about - 2.7%, whereas for d/r' = 1.34 

this error was - 6.5%. 

The examples shown here illustrate some of the possible 

applications of the ha1f-p1ane formulation. It is evident that such 

problems are more efficiently solved by this procedure than using the 

Kelvin fundamental solution which requires defining a series of 

elements on the traction-free surface. The number of these elements, 

in principle, needs to extend to infinity or at least should be 

large enough to produce accurate solutions. Special elements extending 

to infinity have been proposed [91] to reduce such large discretization 

of the free-surface, but they require further tests to validate their 

application. The most accurate and computationally more efficient 

technique is to use the half-plane fundamental solution which eliminates 

the need for any numerical approximation over the free-surface. 
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CH.APTER 4 

BOUNDARY ELEMENT EQUATIONS FOR INELASTIC PROBLEMS 

4.1 Introduction 

This chapter presents the starting equations for the different 

inelastic formulations adopted here. An extended form of Somig1iana's 

identity is first presented by following the procedure introduced in 

Chapter 3. Here, the weighted residual technique is also applied to 

arrive at an equivalent statement. 

By considering first the Kelvin fundamental solution, a proper 

procedure for obtaining the complete integral expression for stresses 

at internal points is presented and a discussion about alternative 

boundary element formulations for 3-D and 2-D problems is included. The 

half-plane expressions are then introduced and the extension of the 

equations to handle inelastic problems is accomplished. Finally, the 

spatial discretization is introduced and the equations are expressed 

in matrix form. 

4.2 Somig1iana's Identity for Inelastic Problems 

In order to start the present section, expression (3.3.27) 

of Chapter 3 will be rewritten for 3-D problems as follows [5J 

where 

f 
n 

£ 

'e 
£ •• (q) 

1J 

cr~.(s, q) ~~.(q) dn(q) 
1J 1J f 

n 
£ 

~ .. (q) £~.(s, q) dn(q) 
1J 1J 

(4.2.1) 

represents the elastic part of the total strain rate 
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tensor (see eqn. (2.4.1». ' This statement is now in a more general 

form in which only the appropriate part of the total strain rate 

tensor is involved. Note that it is obtained by simple symmetry 

considerations as before (see statement (3.2.1». 

Recalling Chapter 2 expression (2.4.1), one gets 

which leads to 

'e e: .. 
1J 

• a 
e: .. - e: .. 

1J 1J 

J O~.(S, q) ~ .. (q) dn(q) 
1J 1J J ~ .. (q) e:~.(s, q) dn(q) 

1J 1J 
n n e: e: 

O~.(s, q) ~~.(q) dn(q) 
1J 1J 

(4.2.2) 

(4.2.3) 

The first integral terms in both sides of expression (4.2.3) can now 

be integrated by parts as in Chapter 3 while the last integral remains 

unchanged. The following expression then arises 

J _ pl(s, Q) ~. (Q) dr(Q) 1 J _ U!(s, Q) p. (Q) dr(Q) 1 
r+r r+r e: e: (4.2.4) 

+ J u!(s, q) h. (q) 
1 

dn(q) + J 0*. (s, q) 
1J 

~~ . (q) 
1J 

dn(q) , 

n n e: e: 

which taking the limit as e: + 0 (see figure 3.3.4) and assuming each 

P. to act separately, gives an extended form of equation (3.2.7) 
J 

U. (s) 
1 

J u!j(s, Q) Pj(Q) dr(Q) - f p!j(s, Q) uj(Q) dr(Q) 

r r (4.2.5) 

+ J u!j(s, q) bj(q) dn(q) + J °jki(s, q) ejk(q) dn(q) • 
n n 
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Equation (4.2.5) is the Somigliana's identity for inelastic 

problems. it was here obtained by following the same procedure presented 

in Chapter 3. This equation is valid for 3-D inelastic problems 

using the fundamental solution due to Kelvin. For half-space type 

problems (fundamental solution due to Mindlin). the same simplification 

indicated in the last chapter can be applied leading to the inelastic 

counterpart of equation (3.5.6). For 2-D problems. however. special 

attention must be given to the inelastic strain rate integral [9]. 

and this will be thoroughly discussed in other sections of this chapter. 

In Chapter 3 Section 3.2 it was mentioned that Somigliana's 

identity could be obtained by the weighted residual technique. The 

advantage of using a weighted residual procedure is that one can 

start from the beginning with the idea of finding a numerical solution 

to the actual problem [1. 2J. Thus. the technique brings some physical 

insight into the numerical solution of the differential equations and 

more importantly. since it is general. a unified procedure capable 

of relating the boundary element method to other numerical methods 

(such as finite elements and finite differences) is obtained. 

The basic steps for this procedure will be outlined in what 

follows. for further details the reader is referred to [1. 2J where 

a complete discussion about the technique is presented. 

We seek an approximate solution to the equilibrium equation 

presented in Chapter 2 (eqn. (2.4.3» 

a .. . + h. 
~J.~ J 

o (4.2.6) 

with boundary conditions 
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u. = u. on 
~ ~ 

r' 
1 

r' 
2 

(4.2.7) 

For an assumed solution, ~. , the error introduced can be 
J 

minimized by writing the following weighted residual statement 

f (Ojk,j + bk)u~ dn 
n 

+ f (uk - ~k)P~ dr 
r'l 

where u~ and P~ correspond to the displacements and surface 

tractions of the weighting field. Note that 

(4.2.8) 

(4.2.9) 

with n. being the direction cosines of the outward normal to the 
J 

boundary of the body. 

If the same material constants (E, G and v) are valid for 

the approximating and the weighting fields, the first term in equation 

(4.2.8) can be integrated by parts to give 

- J . e:jk dn + J bk u~ dn f Pk ~ dr - J Pk u~ dr (Jjk 
n n r' r' 

2 1 
(4.2.10) 

+ J (Uk - ~k)P~ dr 
r' 
1 
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Recalling expression (2.4.6) of Chapter 2, one gets 

where 'e 
a .• 
~J 

. ·e -a 
a .. a .. - a .. 
~J ~J ~J 

Cijkt £kt (see expression (2.2.31». 

(4.2.11) 

Expression (4.2.11) can be substituted into equation (4.2.10) 

as follows 

f 
r' 2 

(4.2.12) 

f 
r' 

1 

and again the first term can be integrated by parts to give 

f a~k . dQ + f 'a 
£jk dQ + f bk ut dQ - f Pk ut dr 

J ,J uk ajk 
Q Q Q r' 

2 
(4.2.13) 

f Pk ut dr + f uk Pt dr + J ;;-k p~ dr • 
r' 
1 

r' 
2 

r' 
1 

The above equation can now be written in general form as 

p~ ';'k dr 

r r 
(4.2.14) 

where the substitution a* = - b* was made. 
jk,j k 

Proceeding as in Section 3.2, one can assume that the weighting 

field is the solution to the fundamental problem (eqn. (3.2.8» 
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which allows for b~ to be given by expression (3.2.3). Thus, for 

each unit point load P. , the following equation is obtained 
~ 

~. (s) = 
~ J u*. (s, 

~J 
Q) p. (Q) dr(Q) 

J J p*.(s, Q) 
~J 

~. (Q) dr(Q) 
J 

r r (4.2.15) 

+ J + f utj (s, q) h. (q) dSl(q) e:*k. (s, q) 
·a 

J J ~ 
0jk(q) dSl(q) 

Sl Sl 

Equation (4.2.15) is the initial stress counterpart of equation 

(4.2.5). Consequently, as discussed before, if the half-space 

fundamental solution is adopted, r can be substituted by r' in 

the second boundary integral. An interesting feature of the initial 

stress form is·that,in contrast with the initial strain equation (4.2.5), 

the reduction to 2-D problems is accomplished by simply keeping the 

subscripts with a range of two. In both cases, however, the specialization 

for s ~ S (S E: r) can be performed as in pure elastic analysis. 

Therefore, the following expression is obtained 

C .. (S) ~. (S) + f p*. (S, Q) ~. (Q) dr(Q) f u*. (S, Q) p. (Q) dr(Q) 
~J J ~J ' J ~J J 

r r (4.2.16) 

J u*.(S, q) b.(q) dSl(q) + J o*k. (S-, q) 
·a dQ(q) + e:jk(q) 

~J J J ~ 

Sl Sl 

where the last integral can be substituted by 

(4.2.17) 

for the initial stress formulation. 

It is worth mentioning that the initial stress and initial 

strain equations are entirely equivalent. This will be proved in 

Section 4.4 where a complete discussion about the alternative boundary 

element formulations is presented. 
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4.3. Internal Stresses, 

Of fundamental importance for the stepwise solution of 

nonlinear material problems is the calculation of stresses at internal 

points. In order to combine both, accuracy and computational efficiency, 

it has been demonstrated by Telles and Brebbia [56] that the proper 

integral equation should be used in preference to computing displacements 

at internal points and differentiating them numerically as it is done 

in finite differences or finite elements. 

The correct integral equations for stresses at internal points 

have been presented in previous papers by the present author. Since 

its derivation requires the derivative of the singular integral of the 

inelastic term and this had often led to incorrect expressions in the 

past [6, 9,45, 47, 5~, a proper procedure for obtaining these 

equations is presented in this section. It is the author's belief 

that this will enlighten the general concept originally due to Mikhlin 

[33J which has been applied in references [10, 46J. 

In order to simplify the presentation, only the Kelvin fundamental 

solution will be considered in conjunction with the initial stress 

equation. Also, from now on the initial notation will be somewhat 

simplified allowing equation (4.2.15) to be written as follows 

(4.3.1) 

From the application of Hooke's law to the elastic part of 

the total strain rate tensor comes the following expression for the 

stress rates (see eqn. (2.4.6) of Chapter 2) 
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cr •• 
1.J 

[ a~. a~'l G __ 1. + _J_ 
ax. ax. 

J 1. 

2Gv a~k 'a 
+ -1 2 - IS .• - cr •• - v aXk 1.J 1.J 

(4.3.2) 

Stresses at points located within the body can be computed by 

substituting equation (4.3.1) into equation (4.3.2) on condition that 

the space derivatives present in (4.3.2) be taken with reference to 

the coordinates of the load point. As in the elastic case, such 

differentiation can be applied directly to the fundamental solution 

tensors for the first three integrals of (4.3.1). However, the last 

one needs further examination; in a more formal representation, this 

integral should be written in the following form 

V. 
1. lim f 

£-+{) n 
£ 

(4.3.3) 

where n£ arises from n by removing a ball of radius £ centred 

at the load point s (see Chapter 3 figure 3.3.4). 

The proper expression for the derivative of 

be written as 

av. 
__ 1. = 
ax 

m 
lim f ,: J 
£-+{) 1 m n 

£ 

V. 
1. 

can therefore 

(4.3.4) 

For simplicity and without loss of generality, the two 

dimensional 'case will be carried out. In this case £ represents 

the radius of a circle and one can define a cylindrical coordinate 

system (~, 8) based at the point 0 = s as shown in figure 4.3.1a. 

In this system of coordinates the tensor £jki can be represented by 

1 
-----ljijki (</» 
r (~, e) 

(4.3.5) 
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where for the case depicted in figure 4.3.la one has r(r, e) = r 
and ~(r, e) = e , but if a small increment in the rectangular 

coordinate x of the singular point is given, not only r and ~ 
m 

become different from rand e but also r£ is shifted (see 

figure 4.3.lb), indicating their dependence on the coordinates of the 

load point. 

Expression (4.3.4) is now of the form 

aVi J2V , { a JRCe) -- = 11m--ax ...rI ax m 0 £--v m _ 
£ 

1/Ijki'a - d- } dSa'k r r r J 
(4.3.6) 

which allows for the application of Leibnitz formula t to the term 

between brackets, i.e. 

£ £ 

(4.3.7) 

Taking into consideration that 0 = sand r(e, e) £ , the substitution 

of expression (4.3.7) in (4.3.6) gives 

av i = J2V lim JR(~) _a _ (1/1 jkiJ 
ax _,A ax r 

m 0 ~~ £ ~ 

J2V 
1/I'k' cos(r,x )d~ J 1 m 

o 
(4.3.8) 

t Leibnitz formula gives that 

~ J~2(a) 
da F(x, 

~l (a) 

J~2(a) aF 
a)dx = aa dx - F(~l' 

~l (a) 
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'il where 0jk(s) represents the value of the initial stress rate at 

the singular point. 

Finally, one has to study the existence of the first integral 

in expression (4.3.8) which can be further written as 

r~ 
o 

JR 
lim _d_ 
e:-+() e: aXm 

r" iki) oa 
r-~ °jk r dr dcp I2'~ {~jkim [,[ajk - ajk(')l~dr} d~ 

{
.a ° jk (s) In(e:) 

I2 • • jkim d~(}·3.') 

where ~oko (cp) = r2 -ad (1/IjkiJ, and it is assumed that 
J 1m xm r 

satisfies a HOlder condition [31, 28J at s such that 

(4.3.10) 

where A and a are positive constants. 

Clearly, the first two terms on the right-hand-side of (4.3.9) 

are convergent and the last one requires that 

o • (4.3.11) 

A condition which is fulfilled by an intrinsic property of 1/Ijkim' 

Therefore, the proof is complete and one can transform expression 

(4.3.8) back to the rectangular coordinate system as follows 

av i J ae:!ki as: °a f -" - = ok dfl - oOk(s) 
oX ax J J 

m fl m r1 

(4.3.12) 
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in which the first integral is to be interpreted in the sense of 

Cauchy principal value, r l defines a circle of unit radius centred 

at the load point and r is the derivative of r with reference ,m 

to the coordinates of the field point. Note that r = - ar/ax • ,m m 

It is worth mentioning that the derivative of the body force 

rate integral can be investigated by the same procedure. In this case, 

due to the weaker singularity of u~., the free term (corresponding 
1J 

to the r l integral) vanishes when E ~ 0 • 

Expression (4.3.12) is also valid for three dimensional 

problems with r l representing the surface of a unit sphere. In 

both cases the corresponding r l integral can be computed in closed 

form and directly substituted in equation (4.3.2). In addition, 

since cryki and present singularities of the same order, 

the same concept applies for the initial strain formulation. Therefore, 

the complete set of equations for two and three dimensional problems 

(Kelvin) is presented in the next section. 

4.4 Alternative Boundary Element Formulations 

In this section different formulations using the Kelvin 

fundamental solutions are discussed. 

4.4.1 Initial Strain - The adoption of an initial strain formulation 

for three dimensional inelastic problems leads to the following 

equation (see Section 4.2). 

. 
C •• U. 

1J J f u~. 1J 
r 

Pj dr - J 
r 

(4.4.1) 
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Equation (4.4.1) is assumed valid for any location of the load point 

(interior or boundary points), provided C •• 
1J 

and the second boundary 

integral on the right-hand-side are properly interpreted as known from 

the elastic application of the technique. 

Under this assumption. the stress rates at interior points 

can be computed by use of expressions (2.4.1) and (2.4.5) of Chapter 2. 

The derivative of equation (4.4.1) yields 

a~. J _1_= 
ax 

m r 

au~. ---ll. • ax Pj dr -
m 

(C •• =15 •• ) 
1J 1J 

(4.4.2) 

where the fourth integral is to be interpreted in the principal value 

sense and the last integral is to be performed over the surface of 

a unit sphere centred at the singular point. Note that the derivatives 

are taken with respect to the load point; as before these are indicated 

explicitly to differentiate from the comma notation which is taken 

with reference to the field point. 

The last integral in equation (4.4.2) can now.be computed 

a*k' r dr J 1 .m 

In what follows the reader is referred to the end of this 

(4.4.3) 

section for the components of the new tensors related to the fundamental 

solutions. 

The above expressions together with (2.4.1) and (2.4.5) 

allow for the determination of the internal stresses 
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. 
O •• 
~J -f P!jk ~k dr + f u!jk bk dn 

r n (4.4.4) 

where the last two terms represent the influence of the inelastic 

strains. 

For plane strains the procedure is analogous, the only difference 

being the fact that the inelastic strain rate integrals still have to 

take into consideration the work performed in the third direction 

'a 
(~3i £33) • This effect is easily incorporated through some particular 

assumptions such as incompressibility of the inelastic strains (valid 

for creep and plasticity of metals) or the isolated case of thermal 

strains [9J. These cases lead to what follows 

c .. u. 
~J J 

in which 

or 

a~k· J ~ 

f 
r 

u~. dr - f p~. dr + p. u. 
~J J ~J J 

r 

2vo .kr . * + J.~ ~f e~ 
°jki 41r(l-v)r ~ 

vo·kr . 
0* - J • ~ jki 47T(l-v)r if 

f u~. b. dn + J a~k· 
'a 
£jk dn 

~J J J ~ 

n n 

(4.4.5) 

o (see section 2.4) (4.4.6) 

(4.4.7) 

where a is the coefficient of linear thermal expansion and T is the 

temperature rate. 

The corresponding internal stress rates are computed by 

O •• 
~J - f 

r 
P!jk ~k dr + f u!jk bk dn + 

n 
(4.4.8) 
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where the last integral is to be taken in the Cauchy principal value . 
sense and if e = 0 

o11'k + G [4v r . r • c5k • - 2v c5.. c5knJ 
1J R. 2w(1-v)r2 ,1,J" 1J., 

(4.4.9) 
G r:'a 'a ] f .• = -~ \..2 e .. + (1-4v)e. o c5.. • 

~ ~\£-VJ ~ - ~ 

For pure thermal strains one has 

(4.4.10) 
f _G(l+v)aTc5 .. 
ij 1-v 1J 

Plane stress problems can also be solved by using equations 
A A 

(4.4.5) and (4.4.8) with cr1ki = cr1ki' crtjkR. = crtjkR.' v replaced 

by v in all ()* tensors and the free term in (4.4.8) being given by 

f .. 
1J 

__ G_ [2'a 'a ] e1. J. + en. c5.. • 
4(1-v) "" 1J 

(4.4.11) 

4.4.2 Initial Stress - In order to discuss the initial stress 

formulation, let us merely study the plastic strain rate integral 

presented in equation (4.4.1). Recalling expressions (3.3.5) and 

(3.3.6) we see that 

(4.4.12) 

by simple inspection of expression (2.2.31) we can make, 

C' k C'k J rs rSJ (4.4.13) 
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was given in Chapter 2 expression (2.4.7). 

Thus, 

Hence the initial stress equation is seen to be equivalent to the 

(4.4.14) 

(4.4.15) 

initial strain. For plane strain problems the demonstration follows 

the same pattern and the corresponding expression is 

In both cases the internal stresses can be computed by 

a .• 
1J J u!jk Pk dr -

r 

where the integral of the initial stress term is in the principal 

(4.4.16) 

(4.4.17) 

value sense and the expressions for the free term are of the following 

form 

and 

g •. 
1J 

1 [( ).a 'a J 15(1-v) 7-5v a ij + (1-5v)a~~ 0ij for 3-D (4.4.18) 

1 [.a 'a J g .• = - ~8 1 ) 2a .. + (1-4v)a oo 0 .. 
1J O~J.-v) 1J NN 1J 

for 2-D plane strain. (4.4.19) 

It is worth noting that for plane strains the initial stress integrals 

do not require the contribution of the work performed in the third 
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direction, nor the particular assumptions concerning need to 

be made. This is because €~3i = 0 and the effect of is 

already included into the components of 'a 
0' •• • 

1J 
As a consequence, 

plane stress problems can be handled by the plane strain expressions 

with the replacement of v by v being the only modification. 

4.4.3 Fictitious Tractions and Body Forces - The last integral 

presented in equation (4.4.1) can be written in terms of the derivatives 

of ut. as follows 
1J 

J {G(Urj,k + Urk,j) + i~~v uri,i ~jk} ~jk dQ (4.4.20) 
Q 

which after integrating by parts gives the identity 

J 
Q 

The substitution of (4.4.21) in (4.4.1) gives as a result 

C •• U. 
1J J 

:. 

p~. 
1J 

u j dr + J 
Q 

u~. 
1J 

b. dQ 
J 

(4.4.21) 

(4.4.22) 

.!. 
where b. 

J 
and were given in Chapter 2 expressions (2.4.12) and 

(2.4.13) respectively. 

Therefore, we have arrived at an inelastic formulation in 

which- traction and body force rates are fictitious (depend on the 

inelastic strains), but the displacements are the actual ones. In 

order to apply equation (4.4.22) one has to be aware that although 

it looks like the elastic application of the boundary element technique, 
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the internal stresses still have to be computed by use of equations 

(2.4.1) and (2.4.5), i.e. 

cr .. 
~J 

(4.4.23) 

Another feature of this formulation is that in contrast with the 

two previous approaches, it needs computation of space derivatives of 

the inelastic strains (see expression (2.4.12)). This may be 

considered as a disadvantage for numerical implementation (since 

constant interpolation is ruled out) but, nevertheless, it is a valid 

procedure for formulating the B.E.M. to inelastic problems and still 

remains to be properly attempted. 

Finally, the new tensors related to the fundamental solutions 

that appeared in this section are of the following form 

cr*'kt = G B{B(1-2V)(0 .. r kr l + o,.or .r .) 
~J 2cm(1-v)r ~J" ~,~ ,J 

+ Bv(ol,r.r + o'kr lr . + o'kr lr . 
~ ,J ,k J,,~ ~"J 

(4.4.24) 

+ o'Dr .r k) - BYr .r .r kr D 
J'" ,~ , ,~ ,J, ,'" 

+ Bo .. r kr .J + BV[o .r .r k + o'kr r . 
~J, , '" l ~ , J, J, t , ~ (4.4.25) 

+ O'kr Dr . + o'or .r kJ 
~ ,,,,.J J"',~, 

BOkor .r . - Byr .r .r kr 0 } + "',~,J ,~ ,J, ,,,, 
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where Q = 2, 1; a = 3, 2; Y 5, 4 for 3-D and plane strain respectively. 

4.5 Half-Plane Formulations 

The extension of the elastic half-plane boundary element 

formulation to inelastic problems follows the same procedure as in 

the Kelvin implementation. 

If we consider the inelastic strains to be incompressible, 

the starting equation for the initial strain formulation is given by 

C •. f d. dr - f p*. 
. 

dr + J u*,. b . dO + J a*k' 
·a (4.5.1) u. Pj u. €jk dO 1J J 1J 1J J 1J J J 1 

r r' 0 0 

in which for plane strain problems the complementary part of the 

tensor that multiplies the inelastic strain rates is 

(4.5.2) 

whereas for plane stress 

(4.5.3) 

Equation (4.5.1) is valid for any location of the load point 

on condition that C .. and the integral over r' be properly 
1J 

interpreted as discussed in Chapter 3. 

By suitably modifying the inelastic strain rate integral, an 

initial stress equation without the condition of incompressibility 

of the inelastic strains can be equally obtained for plane strains 

C .. ~. = J u*. p. dr - J P*1'J' u. dr + J u*. b. dO + J €*k' a~k dO 1J J 1J J J 1J J J 1 J 
r r' 0 0 (4.5.4) 
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where as explained in Section 4.4, plane stress problems can be 

dealt with by simply modifying the Poisson's ratio. 

In order to accurately compute the stress rates at interior 

points, the derivatives of (4.5.1) are combined to produce the 

expressions for the total strain rates and then substituted into 

equation (2.4.5). Here one notices that, due to the non singular 

nature of the complementary tensors, the derivatives of the inelastic 

strain rate integral create exactly the same singularities obtained 

for the single Kelvin implementation. Hence, for plane strains 

one has 

a .• f u!jk Pk dr - J P!jk Uk dr + J u!jk bk dr! 1J 
r r' Q 

(4.5.5) 

+ J ~!jU 
'a EU dQ + 

'a 
f ij (EU) 

Q 

in which the inelastic strain integral is to be computed in the principal 

value sense and f .. is the same free term obtained for the Kelvin 
1J 

formulation, Le •• 

In addition. 

and 

f.. 
1J 

G [.a· 'a J - ~l 2E .. + (1-4v)E nn /) ••• 
q\L-V, 1J ~~ 1J 

c c c 
G ( Clakii + ClaUj ) + 2Gv Clakim --ax:- ax. 1-2v a;z- /) ij 

J 1 m 

where the derivatives are taken with reference to the load point. 

c These derivatives together with uijk 

Chapter 3 Section 3.4. 

and c 
Pijk were given in 

(4.5.6) 

(4.5.7) 

(4.5.8) 
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An interesting feature of the half-plane implementation is 

that if the problem to be analysed satisfies the traction-free 

condition (Pk = 0) over some part of the boundary r - r' , stresses 

at points located along this part of the boundary can be computed as 

if they were internal points. In order to validate equation (4.5.5) 

for such cases, only the expression of f .. needs to be modified to 
1.J 

take into consideration the limiting case c = O. This expression 

can be easily obtained as follows; let us assume a semi-circular 

free body, of radius p ,whose straight boundary is contained by 

the surface of the half-plane (see figure 4.5.1). If body forces are 

not considered, the application of a uniform plastic strain field 

-p 
(E •• ) 

1.J 
to this body, will only produce displacements, internal stresses 

and tractions remain zero throughout the process. 

The application of equation (4.5.5) to represent the stresses 

at the centre S of the semi-circle leads directly to 

(4.5.9) 

moreover, from the condition of existence of the principal value 

(see expression (4.3.11», one can prove that 

(4.5.10) 

Hence, 

-p - f f ij (EkR.) -

r' 
(4.5.11) 

where the relevant boundary displacements (neglecting rigid body 

movements) can be computed by (see Appendix C) 

u. = p(eP - vEP 6 )n 
1. ij kk ij j (4.5.12) 
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r s 

Fig. 4.5.1 Semi-circular free body under a constant 
plastic strain field. 

in which n. represents the direction cosines of the outward normal 
J 

to the curved boundary. 

Equation (4.5.11) therefore provides the required expression 

for f.. when c = 0 
1.J 

o 
(4.5.13) 

For the initial stress formulation the procedure is entirely 

similar and the equation equivalent to (4.5.5) is of the following 

form 
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. 
o .. 

1J J utjk Pk dr - J ptjk ~k dr + J utjk bk dO 
r r' 0 (4.5.14) 

where is obtained from (4.5.8) by substituting ojki by 

1 r ·a ·a ] for g •. - sn=vr 20 .. + (1-4\1)0u. & •• c > 0 
1J -\I 1J 1J (4.5.15) 

and 

gll g12 = 0 

1 G·a ·a ] for o • g22 - 4(1-\1) 022 - all c 
(4.5.16) 

Plane stress problems can be handled by equations (4.5.5) 
A 

and (4.5.14) if Poisson's ratio is modified as before, otjkt otjkt 

and expression (4.5.6) is replaced by 

f .. 
1J 

G [ ·a ·a ] - - 2E .. + E:u. & •• 
4 (l-v) 1J 1J 

(4.5.17) 

Notice that expressions (4.5.13), (4.5.15) and (4.5.16) still remain 

valid. 

4.6 Spatial Discretization 

The spatial discretization of the equations previously 

presented is illustrated in this section for two dimensional problems. 

The boundary of the body is assumed to be represented by surface 

elements as discussed in Chapter 3 and the part of the domain in which 

non-zero inelastic strains are expected to develop is discretized 

using internal cells for integration. The body force term, though not 

causing any difficulty for implementation, is not considered for simplicity. 
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The discretization of the boundary integrals has been 

thoroughly discussed in Section 3.7 and the same procedure can be 

followed here. Consequently, emphasis will be given to the domain 

integrals of the inelastic terms. 

It is instructive to start by assuming an initial strain 

formulation in which the inelastic strains are incompressible. Thus, 

let us now concentrate the attention to the following equation 

C •• ~. + J p*. u. dr 
1J J 1J J 

(4.6.1) 

r 

where the appropriate alterations for half-plane problems are implied. 

For the domain discretization of equation (4.6.1) the Cartesian 

coordinates x(j) of points located within each cell O. 
J 

can be 

represented. by the following equation 

M x(m) (4.6.2) 

where M represents the interpolation functions and x(m) the 

coordinates of some special points which define the geometry of the 

cell. 

The inelastic strain rates are assumed to be interpolated 

within the cell in the form 

;a(j) N ;a (n) 

in which N stands for the interpolation functions and .a(n) 
t: 

(4.6.3) 

for 

the values of the inelastic strain rates at a certain number of stress 

points (equivalent to nodal points in 2-D finite elements). 
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Assuming L boundary elements and Z internal cells, the 

discretized version of equation (4.6.1) for a boundary node S. 
1. 

given by 

L 

( f dr) 
L 

[ f drJ 
• (n) 

C(S. ) ~(S.) + L p* N ~ (n) L u* N 
- 1. - 1. j=l j=l 

r 
rj r. 

J 

Z 

[ f ~ drl»)~a(n) + L &* 
j=l 

rI· 
J 

is 

(4.6.4) 

and the same form is valid for an internal stress point si (~ !) 

For general purposes it is convenient to compute the cell 

integrals by using a suitable numerical quadrature scheme; e.g., for 

triangular cells Hammer's integration formulae [lJ can be used 

f &* N drl 

rI. 
J 

(4.6.5) 

where K is the number of integration points, Wk is the associated 

weighting factor and IJI is the Jacobian of the coordinate transformation 

which allows for the representation of the interpolation functions 

in terms of a homogeneous coordinate system (~l' ~2) Note 

that these integrals present integrable singularities when the singular 

node (Si) or point lies on the cell rI. 
J 

Thus, some special 

care must be taken in such cases. 

The application of equation (4.6.4) to all boundary nodes 

generates the following matrix relationship 

H Ii 9 p + D ~a (4.6.6) 
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where matrices Hand G are the same as those obtained for elastic 

analysis and matrix D is due to the inelastic strain integral. 

Computation of stress rates at internal points follows a 

similar procedure. Here, the equation equivalent to (4.6.1) is given 

by 

. 
cr •• 

1J f utjk Pk dr - f ptjk ~k dr + (4.6.7) 

r r 

where as before the appropriate alterations for half-plane problems 

are implied. 

Application of equation (4.6.7) in discretized form leads to 

L 

( f dr) 
• (n) L 

( f dr h (n) a(s. ) l 'u* N P - l 'p* N _ 1 

j=l j=l r. r. 
J J (4.6.8) 

z 

[ f d~J Ea(n) l ,;* N + C'(s.) 'a + e: (s.) 
j=l 

_ 1 _ 1 

~. 
J 

for a stress point s . . 
1 

As before, numerical integration schemes can be used for 

integrating over the cells. In this case, however, when the singular 

point s. lies on the cell ~. 
1 J 

some of the integrals are only 

possible in the principal value sense. Here we recall a general 

procedure devised by Telles and Brebbia [46J which provides indirect 

means of computing such principal values for any kind of interpolation 

functions or cells shape. This procedure is based on the application 

of a constant inelastic strain field to the discretized integral 

equations and is presented in Appendix A. 

Equation (4.6.8) when applied to all internal stress points 

yields 
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. 
CJ G' ~ - H' u + (~' + ~') ~a (4.6.9) 

where 9' is a well defined matrix that represents the free terms 

(last term in eqn. (4.6.8» and ~' is due to the inelastic strain 

integral. Matrices ~' and G' correspond to the boundary integrals 

in a similar fashion to Hand G 

Note that equation (4.6.8) is only valid for internal stress 

points and possibly for stress points over the traction-free part of 

the boundary r - r' . Therefore, in order to compute the stress 

rates at boundary nodes, different expressions must be used. Such 

expressions are obtained by means of strain displacement relationships 

and traction rate values along each boundary element. They do not 

require any integration and are presented in Appendix B. Henceforth, 

such simple expressions are assembled into (4.6.9) and computation of 

stress rates at all stress points becomes possible in a unified manner. 

It is obvious that what has been discussed here also applies 

for the initial stress equations. In this case~ equations (4.6.6) 

and (4.6.9) are substituted by 

H ~ ~ E + 9 
'a 

CJ - (4.6.10) 

and 

. 
G' CJ ~ - H' u + (g' + E')aa (4.6.11) 

where the part of ~' that corresponds to the integral equattions stands 

for the free terms g .• and the equivalent part of Q' together with 
1J 

9 are due to the initial stress integrals. Notice that the principal 

values of g' can still be computed by applying equation (4.6.11) 

to represent a state of constant initial stresses, in much the same 

way as it is shown in Appendix A for the initial strain equation. 



www.manaraa.com

129 

In order to minimize the computer effort for the solution of 

inelastic problems, let us reexamine equations (4.6.6) and (4.6.9). 

For a we11-posed problem, a sufficient number of tractions and boundary 

displacements needs to be prescribed. The unknowns are then reordered 

leading to 

i + D ;a (4.6.12) 

and similarly, 

. 
a - A' Y + i' + D* ;a (4.6.13) 

where D* = D' + C' and the contribution of the prescribed values is 

included in vectors i and i' . 

From the multiplication of equation (4.6.12) by A-1 comes 

where 

and 

in which 

and 

'a • y=Ke: +m 

• -1· 
m = A f • 

substituting (4.6.14) into (4.6.13) yields 

• .a a=Be: +n 

B D* - A'K 

· n i' - A' m 

(4.6.14) 

(4.6.15) 

(4.6.16) 

(4.6.17) 

(4.6.18) 

(4.6.19) 
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Note that the elastic solution to the rate problem is given by the 

vectors ~ and ~ 

From the above it is seen that equation (4.6.17) represents a 

single recursive expression which relates stress rates at selected 

boundary nodes and internal points to the corresponding inelastic 

strains and the elastic solution. Also, this expression is now 

independent of the boundary equation (4.6.14) and provides useful 

means of solving nonlinear material problems. This will be the subject 

of Chapter 5. 

In terms of efficiently programming. it should be noted that 

initially matrix A is assembled in the array of matrix B and that 

once the system of equations is solved, equation (4.6.17) is generated 

in such a way that only matrix ~ is actually formed. Thus, only 

K and B require storage. 

Finally, the same matrix manipulations can be performed in the 

initial stress equations (4.6.10) and (4.6.11). In this case, however, 

a slight modification in equation (4.6.11) has proven to be convenient 

for elastoplastic problems and this will be discussed in Chapter 5. The 

initial stress equations are also employed in Chapter 6 where problems 

concerning viscoplasticity and creep are dealt with. 

4.7 Internal Cells 

Herein, for the numerical implementation of the equations 

presented in the previous sections, linear boundary elements and linear 

triangular cells have been chosen for both initial strain and initial 

stress formulations. The implementation of linear boundary elements 

has been discussed in Chapter 3 and the same procedure was followed here. 
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For linear triangular cells the interpolation functions are 

expressed in terms of a·homogeneous coordinate system (~l' ~2) 

as shown in figure 4.7.1 and the Jacobian IJI indicated in expression 

(4.6.5) is simply twice the area of the triangle. In addition, the 

interpolation functions introduced in equation (4.6.2) are of the 

following form 

M = [I .. 
- "'1 I ~2 (4.7.1) 

where ~3 = 1 - ~2 - ~l' I is the identity matrix of order two 

and the corresponding vector x(m) is formed by subvectors 

for each stress· point i = 1,2,3 located at the corners of the cell. 

Similarly, the interpolation funcbions presented in equation 

(4.6.3) are given by 

(4.7.2) 

where I is now the identity matrix of order three and the inelastic 

strain rates form subvectors of ·a(n) 
e: of the form 

for each stress point i (see figure 4.7.1). 

With reference to the Kelvin implementation. the computation 

of the domain integrals indicated in equations (4.6.4) and (4.6.8) 

has been carried out by a semi-analytical integration scheme [49J. 

In order to describe it, let us drop the standard tensor notation and 

express the interpolation functions in terms of the Cartesian coordinate 

system (x, y) as follows [2J 

(4.7.3) 
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3L_-----~ 
(0;0) 

Fig. 4.7.1 Triangular cell and definition of intrinsic 
coordinate system (~l' ~2)' 

where a represents the point to which the function refers and 

a = x - x 
a y S 

with a = I, 2, 3 for S = 2, 3, 1 and y = 3, I, 2. 

For the total computation of matrix ~ each cell will 

contribute with 2 x 9 matrices of the following form 

d = f { 
rill 

(4.7.4) 

(4.7.5) 

(4.7.6) 

(4.7.7) 
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where 

[:fll 2o~21 :b] 0* (4.7.8) 

ot12 2oh2 crh2 

To illustrate the present semi-analytical integration scheme 

the case when the singular node coincides with one ~f the cell points 

will be studied. Let us consider the typical expression 

dll J ;* ~CI. dn (4.7.9) 

nll 
II 

where <.! represents the 2 x 3 submatrix CI. of d 

In order to perform the integral, one can define a cylindrical 

coordinate system (r, $) based at the singular point y as shown 

in figure 4.7.2. 

be represented by 

In this system of coordinates the tensor 

1 
-W'k' r J 1 

in which W'k' is a function of $ only. 
J 1 

Expression (4.7.9) can then be written as 

a*k' J 1 

where is the interpolation function with reference to the 

system 

can 

(4.7.10) 

(4.7.11) 

(r. <p) 

(4.7.12) 
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-2A 
by cos <I> + ay sin <I> 

I ~~ or 
= 

oy 
sin <I> 

= cos<l> 

x 

Fig. 4.7.2 Cylindrical coordinate system based at 
the singular point y. 

Ys being the value of the interpolation function at the singular 
a 

point Y. i.e. 

{ : for a 'I y 

(4.7.l3) 
for a y. 

Notice that ~ does not depend on r and one can integrate 

(4.7.11) analytically with respect to r and take the limit for 

£ -+ O. The following expressions are then obtained 
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A t2 !{ bo.coscf> + a sincf> 
} d;. dO. a. 

for a. '" y (4.7.14 ) 
(b coscf> + a sincf» 2 

cf>l y y 

and 

dO. 
- A t2!{b eo.; 

1 
} d; • for (4.7.15) + a sincf> a. = y • 

cf> y Y 
1 

The advantage of integrating analytically with respect to r 

is now evident as very simple expressions are achieved and the singularity 

of the ~jki tensor is removed. Integration with respect to cf> does 

not present any problems and one can use standard one dimensional 

Gaussian quadrature formulae (five integration points has proved to 

be sufficient). This can be done by simply expressing the variable 

cf> as follows 

(4.7.16) 

where n is defined on the interval [-1. iJ . 

Computation of matrix P' follows the same pattern with the 

difference that each cell contributes with 3 x 9 matrices of the form 

where 

'd f { [,~ ... ~l '~* ~2 'cr* ~3 J} dn 

nL', 

" ~ " 
°tlll 20t1l2 °t122 

'0* "* 
°1211 

2"* 
°1212 

"* 
°1222 

"* 
°2211 2crh12 cr~222 

(4.7.17) 

(4.7.18) 
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Typically one can consider 

,~a = J '&* ~ dO. (4.7.19) _ a 

°A 
As before. in order to illustrate the semi-analytical process 

of integration. the case when the singular stress point coincides 

with one of the cell points will be studied. In this case, expression 

(4.7.19) presents a further difficulty for a = y , which means 

that integration is only possible in the principal value sense taking 

into consideration the contribution of. all the adjacent cells connected 

to y • 

Introducing the cylindrical coordinate system of figure 4.7.2. 

the tensor a tjkR. can be written as 

1 
;2 "'ijkR. (4.7.20) 

where "'ijkR. is a function of ~ only. 

Expression (4.7.19) turns to be represented by 

(4.7.21) 

For a; y • after integrating with respect to X and 

performing the limit for e + 0 • expression (4.7.21) gives 

(4.7.22) 

When a = y • integration of (4.7.21) regarding to r gives 

,{ ( -2A 
'" ln b cos~ + a 
- y y 

si~ ) - cos~ + a sin~) 
y 
(4.7.23) 
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To calculate the principal value let us first consider the 

following part of (4.7.23) 

~ = - r2 '! [1 + 1n(€)] d$ (4.7.24) 

$1 
It is easily verified that in order to compute the contribution of all 

the adjacent cells connected to y, one simply has to modify the 

integration limits in (4.7.24). This gives, due to an intrinsic 

property of W""k (see expression (4.3.11» 
1.J R. 

III = - [(1 + 1n(€)] f21T 

o 
o (4.7.25) 

Once that the singular term has dropped, one can consider the 

rest of the expression (4.7.23) and take the limit for € + O. The 

following expression then arises 

, 1 ( - 2A ) ! n by cos$ + a y sin$ d$ • (4.7.26) 

As before, one dimensional five points Gaussian quadrature 

formula can now be used to integrate (4.7.22) and (4.7.26). 

The general case when the singular node or stress point y is 

not coincident with one of the cell points follows the same process. 

Here, the use of a semi-analytical integration procedure is not so 

important since the integrals are always regular. Nevertheless, this 

procedure is still recommended in order to save computer time. Hence, 

with reference to figure 4.7.3 the integrals are split up and the 

following expressions are obtained 

d a = (4.7.27) 
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L y 

and 

'cP 

where 

x 

Fig. 4.7.3 Cylindrical coordinate system for semi-analytical 
integration. General case. 

t3'(4)) ~a r3'~ (3(4» 
~ 

+ r 2 .....If.. dr d4> '1/1 -dr d4> r r 
4>1 R2 (4)) 4>3 Rl (4)) 

(4.7.28) 

-
~a is given by expression (4.7.12) and 

R (4)) 
ex (4.7.29) 

Note that y~ is still the value of the interpolation function at 
ex 

the singular point y and that expression (4.7.13) is not valid 

any more. 

Since the tensors e:~k. and e:~.k (Kelvin) can be cast into 
J 1. 1.J 1 

the form presented in (4.7.10) and (4.7.20). the same integration 
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scheme was here applied for the initial stress formulation. 

With reference to the half-plane formulations, it has been 

shown that the complementary part of the expressions present no 

singularities when c > O. Consequently, simple quadrature formulae 

can be used for the corresponding domain integrals. Herein, seven 

points Hammer's formula has been applied, but this number of points 

can be increased or reduced if necessary. The limiting case c = 0 

has been seen to produce singularities of the same order as those 

present in Kelvin's, therefore the two parts of the fundamental 

solution are added up and the integrals are properly computed using 

the same integration scheme (semi-analytical) normally employed 

for the Kelvin part. 
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CHAPTER 5 

ELASTOPLASTIC BOUNDARY ELEMENT ANALYSIS 

5.1 Introduction 

In this chapter the boundary element equations presented in the 

last chapter are employed to solve problems concerned with the 

inviscid or classical theory of plasticity. An application of the 

initial strain equations for incompressible plastic strains is first 

introduced in conjunction with the von Mises yield criterion and 

Mendelson's successive elastic solutions method [63J. This simple 

solution technique, also called "elastic predictor - radial corrector 

method" by Schreyer et al. [92J, has proved to be very efficient and 

stable with reference to the load increment size. The initial stress 

equations, on the other hand, are more general and are here implemented 

to handle four different yield criteria (Tresca. Mises, Mohr-Coulomb 

and Drucker-Prager), with two different iterative routines. The 

first is a pure incremental technique comparable to what was used by 

Zienkiewicz et al. [9:fl for finite elements. The second deals with 

accumulated values of the initial stresses in a similar fashion to 

the initial strain implementation. 

Several examples are presented to illustrate the applicability 

of boundary elements to elastop1astic problems and these also include 

some geotechnical problems solved by using the ha1f-p1ane fundamental 

solution. 

5.2 Some Simple E1astop1astic Relations 

In Section 2.3 of Chapter 2 it was demonstrated that uniaxial 
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plastic behaviour is only possible if the yield criterion given by 

expression (2.3.13) is satisfied. Such expression is repeated here 

for completeness 

F(a, k) a - a O. o (5.2.1) 

This yield condition was seen to be valid to describe uniaxial yield 

behaviour. For general stress states this sort of representation 

is generalized to handle any possible combination of stresses. In 

the present section, only the von Mises yield criterion will be considered 

and this can be written as follows [60 - 64, 68 - 71J 

F(a •• , k) ... 13J2 - a .. 0 
1J 0 

(5.2.2) 

where J 2 is the second invariant of the stress deviator tensor 

(see Chapter 2 expression (2.2.15» and as before k is a hardening 

parameter representing the total plastic work, i.e. 

k=wp"fa .. de:~.. (5.2.3) 
1J 1J 

As discussed before, plasticity is a path dependent phenomenon, 

therefore, it becomes necessary to compute the differentials or 

increments of plastic strain throughout the loading history and then 

obtain the accumulated strains by integration or summation. A 

suitable relation for the determination of the plastic strain increments 

is given by the well-known Prandtl-Reuss equations [60, 61, 63J 

de:~ • 
1J 

S •• d)" 
1J 

(5.2.4) 

where d).. is a proportionality factor which may vary throughout the 

loading history, but is always positive. 
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In addition, it is convenient to define an equivalent or 

effective stress and an equivalent or effective plastic strain increment 

as 

and 

(j 
e 

de:P = ... 13. de:~. de:~. 
e 13 1.J 1.J 

(5.2.5) 

(5.2.6) 

Note that for the uniaxial case presented in Section 2.3 (j = (j and 
e 

de:P = de:P 
e 

written as 

Moreover, the von Mises yield criterion can now be 

(j - (j 
e 0 

o 

which is-entirely equivalent to expression (5.2.1). 

with reference to equation (5.2.4) it is seen that the 

(5.2.7) 

proportionality factor dA can be expressed in terms of the equivalent 

forms (j and de:P if we square both sides of the equation as e e 

follows 

de:~. de:~. 
1J 1.J 

which leads to 

or 

S •• S •• dA2 
1J 1.J 

(5.2.8) 

(5.2.9) 

(5.2.10) 

For the initial strain imp1ementaiton of the boundary element 

technique, the plastic strain increments were computed by using the 
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above expressions as follows [63J; let us assume that a loading 

path is found to reach a given state of stresses and accumulated 

plastic strains e:l? • 
1J 

When the load is increased by a small amount, 

the additional plastic strains produced are L\e:l? 
1J 

strains are given by 

e: •• 
1J 

e:~. + e:l? + L\e:l? 
1J 1J 1J 

and the total 

where already includes the current load increment. 

(5.2.11) 

It is now convenient to define a modified total strain tensor 

of the form 

or 

, 
e: •• 1J e: •• - e:l? • 

1J 1J 

where expression (5.2.13) is simply (see expression (2.2.28» 

Expression (5.2.13) can also be written in deviatoric form 

as follows (note that L\e:P = 0) 
kk 

in which 

e! . 
1J 

o .. 
e:!. - --.!J.. e:' 

1J ---r- kk 

Recalling the Prandtl-Reuss equations given by (5.2.4), 

expression (5.2.15) yields 

(5.2.12) 

(5.2.13) 

(5.2.14) 

(5.2.15) 

(5.2.16) 
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By squaring both sides of (5.2.17) in a similar fashion to 

what was done for expressions (5.2.8) to (5.2.10), the following 

relation arises 

where 

Substituting (5.2.18) into (5.2.17) gives 

From the above equation it is seen that in order to determine the 

actual magnitudes of the plastic strain increments, the equivalent 

(5.2.17) 

(5.2.18) 

(5.2.19) 

(5.2.20) 

plastic strain increment must be determined. Therefore, substituting 

the proportionality factor ~A given by (5.2.10) into expression 

(5.2.18) comes 

which gives 

Since the condition expressed in (5.2.7) must be satisfied 

throughout the plastic process, ae can be substituted by ao in 

equation (5.2.22) 

(5.2.21) 

(5.2.22) 
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Note that 0 0 corresponds to the uniaxial yield stress after the 

application of the current load increment, consequently', it is 

(5.2.23) 

still unknown. This term, however, can be approximated by a truncated 

Taylor series about the preceeding value of 

load increment is applied) as follows 

1< o 
o 

k-1 o 
o 

o 
o 

(i.e., before the 

where H' has been defined in Chapter 2, Section 2.3. 

Substituting (5.2.24) into (5.2.23) and solving for ~€p 
e 

comes finally 

3G € - 0 
~€p _____ ~e~t ___ o~ 

e 3G + H' 

(5.2.24) 

(5.2.25) 

where the values of and H' are computed before the load increment. 

The equations discussed here have been presented for the general 

3-D case. For 2-D problems these equations are properly modified to 

account for plane strain or plane stress as indicated in Appendix D. 

This allows one to work with accumulated values of tractions, 

displacements and stresses in equations (4.6.14) and (4.6.17). 

Equation (4.6.14)can now be written as 

(5.2.26) 

and equation (4.6.17) 

o (5.2.27) 

where €p represents the accumulated plastic strains up to (but not 

including) the corresponding to the current load increment ~€p which 

are to be determined iteratively. 
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5.3 Initial Strain - Numerical Solution Technique 

With reference to equations (5.2.26) and (5.2.27) one notices 

that vector ~ represents the elastic solution to the boundary 

problem (tractions and displacements unknown) and that vector n stands 

for the corresponding stresses. Therefore, load at first yield can 

be calculated by taking the most highly stressed boundary node or 

internal point and comparing its equivalent stress aMAX with the e 

uniaxial yield stress of the material. The incremental process 

starts by reducing this stress value with a load fao.tor defined as 

follows 

A 
o 

a 
o 

MAX a e 

(5.3.1) 

The load increment is then calculated and further values of the load 

factor are given by 

where til 

A 
i 

A + B 
i-l 

being the given value of the load increment 

with reference to load at first yield. 

Equations (5.2.26) and (5.2.27) are now written as 

and 

For a given value of Ai' the plastic strain increment 

(5.3.2) 

(5.3.3) 

(5.3.4) 

is determined iteratively at each selected boundary node and internal 

stress point as follows: 
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a) Compute stress (eqn. (5.3.4» 

b) Calculate 

e!. (eqn. (5.2.13» 
~J 

eet (eqn. (5.2.19» 

~eP ~ 0 (eqn. (5.2.25» e 

c) Verify convergence, i.e. 

d) 

Compare ~eP calculated with its previous value. e 

Compute new estimate of ~e~. (eqn. (5.2.20». 
~J 

e) Continue with next node or point and start with (b) 

until all nodes and points have been considered. 

f) Go to a) for a new iteration. 

Once convergence is obtained (within prescribed tolerance) 

for all selected nodes and points, ~eP is added to eP and its 

value is also used as an initial guess for the next load increment. 

Note that for the whole incremental-iterative process to take 

place, only equation (5.3.4) is required. Equation (5.3.3) being used 

only once convergence is achieved and if boundary unknowns are requested 

by the user. Furthermore, matrices K and B as well as vectors ~ 

and ~ are generated only once at the beginning of the entire process, 

which represents a great saving in computer time. 

5.4 Examples - Initial Strain Formulation 

To outline the applicability of the formulation described 

in the previous sections, some examples were run and results have 

been compared with finite element and experimental analyses. Also, 

whenever possible, analytical solutions are included for checking the 

results. 
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5.4.1 Perforated Aluminium Strip - This plane stress problem 

(figure 5.4.1) is perhaps the most classical plasticity example and 

has been used to assess several alternative formulations. 

Material parameters are as follows 

E 7000. kg/mm2 

Y = 24.3 kg/mm2 

H' 0.032E 

\1=0.2. 

Figure 5.4.1 shows the discretization used in this analysis. 

It is worhh noting that the internal cells were confined to the region 

where plastic strains were predicted. This is a feature unique to 

BEM. 

A comparison between experimental stresses obtained by Theocaris 

and Marketos [94J and the stresses obtained in the present analysis 

at the centre section is given in figure 5.4.2 for a = 11.5 kg/TIBI1-. a 

Although computed stresses slightly differ near the hole, the results 

compare well with other plasticity formulations (e.g., see [9~). 

Plastic points, for various values of 2oa /Y are shown in figure 5.4.3 

together with the finite element plastic zones presented by Zienkiewicz 

and Cormeau ~~ obtained by use of the mesh shown in figure 5.4.4. 

5.4.2 Polystyrene Crazing Problem - In order to study the effect of 

voids in polystyrene strength, this example was ren by Haward and Owen 

[97J using the finite element method. The geometry of the problem is 

given in figure 5.4.5 where boundary element and internal cell 

discretization is also shown. For the present comparison, plane strain 



www.manaraa.com

E 
E 
S2 

cry 
y 

1.4 

1.2 

1.0 

0.8 

0.8 

0.4 

0.2 

149 

~1.~-----------------------18mm------------------------~.1 

Fig. 5.4.1 
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Perforated aluminium strip. Boundary element 
and internal cell discretization. 
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r 

Fig. 5.4.2 Experimental and computed stresses (Oy) at 
root of perforated aluminium strip. 
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Fig. 5.4.3 Plastic points obtained by BEM and plastic zones 
obtained by FEM for various values of 20 /Y. 

a 

Fig. 5.4.4 Quadratic isoparametric finite element mesh 
used for perforated strip problem. 
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approximation was used in both FEM and BEM analyses. the former 

using quadratic isoparametric elements as depicted in figure 5.4.6. 

Ideal plasticity was assumed with 

E 42. x 103 MN/m2 

a Y = 105. MN/m2 
o 

" = 0.33. 

Two loading conditions were considered. biaxial tension and 

uniaxial tension, both applied by prescribing displacements at the edges. 

Figure 5.4.7a and b shows the results obtained by both programs 

for the two loadIng cases. As can be seen, agreement between the 

different formulations has been obtained. 

5.4.3 Plane Strain Punch - This example consists of a rigid flat 

punch indented into a solid plane strain specimen (see figure 5.4.8). 

Finite element solutions with different material parameters were presented 

by Nayak and Zienkiewicz [98J. Boundary element results were calculated 

with the discretization shown in figure 5.4.8 (no boundary elements 

along symmetry axes) and by incrementing the rigid punch displacements. 

For this comparison two different material proper~ies were 

used; ideal plasticity (H' 0) and strain softening (H' = - O.lE). 

Mean pressure - displacement curves shown in figure 5.4.9 exhibit close 

agreement between finite element and boundary element results, despite 

the rather coarse discretization employed for the boundary element 

solution. 
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Fig. 5.4.5 Two dimensional cylindrical void model and 
discretization used for BEH. 

Fig. 5.4.6 Quadratic isoparametric finite element mesh 
used for polystyrene crazing problem. 
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Fig. 5.4.7 Mean stress-strain curves for polystyrene 
crazing problem. 

(a) biaxial tension 

(b) uniaxial tension (fixed edge) 
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Fig. 5.4.8 Plane strain punch problem. Boundary element 
and internal cell discretization. 

Plastic zones obtained for the strain softening case using FEM 

and the mesh shown in figure 5.4.l0a. agree reasonably well with BEM 

plastified points as shown in figure 5.4.l0b. 

5.4.4 Thick Cylinder - In this example the plane strain expansion of 

a thick cylinder subjected to internal pressure is studied. Ideal 

plasticity is assumed with the following material parameters 

E 12000. dN/mm2 

24. dN/mm2 

v = 0.3. 
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Fig. 5.4.9 Mean pressure-displacement curves for plane 
strain punch problem. 
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Fig. 5.4.10 Plane strain punch problem. (a) quadratic isoparametric 
finite element mesh. (b) comparison between plastic 
zones obtained by FEM and p1astified points obtained 
by BEM (Mb = 0.0052) 
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Boundary element results computed without boundary discretization 

of the symmetry axes (see figure 5.4.11), are here compared with the 

analytical solution produced by Hodge and White [62J. 

Radial displacements over the outer boundary and circumferential 

stress distribution (plastic front at r' 1.6a) exhibit good 

agreement with the analytical solution as shown in figure 5.4.12 

and 5.4.13 respectively. 

The applications shown in the present section clearly indicate 

the potentiality of boundary elements for solving plasticity problems. 

In all the examples the load increment was kept between 5% to 25% of 

the load at first yield and it was verified that the successive elastic 

solutions procedure employed is very stable with reference to the load 

increment size. Consequently, this procedure is recommended for Mises 

material problems. In the next section the stress-strain relations 

will be presented in a more general form and different yield criteria 

will be included for the initial stress implementation. 
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Fig. 5.4.11 Thick cylinder problem. Boundary element and 
internal cell discretization. 
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Fig. 5.4.12 Outer surface displacements for thick cylinder 
problem. 
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Fig. 5.4.13 Circumferential stress distribution in thick 
cylinder. Plastic frmnt at r' = 1.6a. 
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5.5 General Elastoplastic Stress-Strain Relations 

For the formulation of a theory which models elastoplastic 

material deformation, three requirements have to be met, these are: 

a) Explicit elastic relationship between stress and strain 

before the onset of plastic deformation. 

b) A yield criterion indicating the stress level at which 

plastic flow commences. 

c) Relationship between stress and strain for post yield 

behaviour. 

Requirement (a) has been thoroughly discussed in Chapter 2, 

Section 2.2. Therefore only (b) and (c) will be considered here. 

The yield criterion for isotropic hardening can be written 

in general form as 

F(a .• , k) = 0 
1J 

where k is the work hardening parameter (see expression (5.2.3» 

that gives the instantaneous position of the yield surface in the 

n-dimensional stress space. 

(5.5.1) 

On physical grounds, one can notice that the yield criterion 

to be independent of the orientation of the coordinate system employed, 

should be a function of the three stress invariants. It is common 

to represent two of these invariants as functions of the deviatoric 

stresses (see Chapter 2) 
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II = 0kk 

1 S .. (5.5.2) J 2 = 2' Sij 1J 

J 3 
1 

Sjk Ski = 3 Sij . 

In the present work. instead of J 3 the a1te~ative stress invariant 

a • known as the Lode angle [76J was used. This invariant has 

been introduced in Section 2.2 and is given by 

1f 1. -1 - 6' ~ a = 3 S1n [- 32{3 -.21 ~ !.6 
3/2 

J 2 

By using these stress invariants, different yield criteria 

can be applied, such as [j6] 

Tresca 

Von Mises 

Mohr-Coulomb 

2~ cosa - 00 

I3.f:" - ° 0 2 0 

o 

11 1 . 3"" sin$' + ~(cosa - - S1Da sin$') - c' cos$ = 0 
13 

in which $' is the angle of internal friction and c' is the 

cohesion of the material. 

Drucker-Prager 

a'I +.fJ": - K' 1 2 o 

(5.5.3) 

(5.5.4) 

(5.5.5) 

(5.5.6) 

(5.5.7) 
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w~re 

a' 2sin~' 

13(3-sin,p' ) 

161 

K' 6c' cos~' 

13 (3-s in,p , ) 

Mohr-Coulomb hypothesis may be simulated by the Druker-Prager 

criterion in plane strains if a' and K' are written'as ~9J 

a' K' 3c' 

For our practical purposes, equation (5.5.1) can then be 

written as 

F (0 •. , k) = f (0 .. ) - 11' (It) = 0 
kJ kJ 

where one can notice that f(o .. ) is a scalar function of 0 .. 
kJ kJ 

which plays the role of an equivalent stress here designated by 0e 

As a consequence, we can define an equivalent plastic strain 

(5.5.8) 

(5.5.9) 

(5.5.10) 

whose increment produces an increment in the plastic strain energy as 

follows 

0 .. de;~. dk 
kJ kJ 

Note that for the von Mises criterion de;P defined above is given 
e 

by expression (5.2.6). 

(5.5.11) 

Irt order to obtain the stress-strain relations for post yield 

behaviour, let us first rewrite equation (2.4.5) of Chapter 2 in 

incremental form 

do .. 
kJ 

Within the context of associated plasticity, the flow rule 

also known as normality principle [60, 68, 69J, can be described by 

(5.5.12) 
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de:~. = dA .1!... 
1J (la •• 

1J 
(5.5.13) 

where dA is a proportionality factor, termed the plastic multiplier. 

It should be pointed out that here the Prandtl-Reuss equations can 

also be simulated for the von Mises criterion, dA however would not 

be represented by expression (5.2.10) any more. 

The substitution of (5.5.13) into (5.5.12) gives 

in which 

da .. 
1J 

When plastic yielding is occurring the stresses satisfy 

equation (5.5.10) which by differentiating gives 

or, according to (5.2.3) 

o 

From the application of the normality principle to equation 

(5~5.l7) results 

If we substitute (5.5.14) into the above equation and solve for dA 

come~ 

(5.5.14) 

(5.5.15) 

(5.5.16) 

(5.5.17) 

(5.5.18) 

(5.5.19) 
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where 

Y' = a .. C + d1/l 0 1J ijkR. ~R. dk ij aij • 

Before we go further the last term in expression (5.5.20) 

can be examined. It is easy to show that f(o .• ) is a homogeneous 
1J 

function of degree one and this allows the application of Euler's 

theorem [SOJ as follows 

0 •• 2.L = f(o .. ) = 0 1J ao.. 1J e 1J 

The substitution of (5.5.21) and (5.5.11) into (5.5.20) 

yields 

, C + ~ 
y = aij ijkR. ~R. d£P 

e 

where d1/l/d£P = H' if 1/1 is defined as the uniaxial yield stress. 
e 

Equation (5.5.19) can now be used to substitute dA in 

(5.5.14) providing the required incremental stress-strain re1at:ons 

in which 

cep C - !. c. . a a C ijkR. = ijkR. y' 1Jmn mn op opkR. 

For the application of the above relations to the initial 

(5.5.20) 

(5.5.21) 

(5.5.22) 

(5.5.23) 

(5.5.24) 

stress formulation, a further modification has proved to be convenient. 

Let us adopt the following notation (see expression (4.2.11» 

(5.5.25) 
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where da~. stands for the components of the elastic stress 
l.J 

increments (i.e., these represent the stress increment values as if a 

pure elastic problem were being solved). 

Equation (5.5.23) can then be written in the following form 

da .. = da~. - 1:. C.. a a.JI, dakeJl, l.J l.J y' l.Jmn mn it 
(5.5.26) 

which means that the true stresses can be computed from the corresponding 

elastic stresses in incremental form. In addition to this, the 

increments of initial stress presented in Chapter 2 equation (2.4.7) 

can also be calculated by the relation 

where da~. 
l.J 

da~. 
l.J da~. - da.. = 1:. c. . a dakeJl, l.J l.J y' l.Jmn mn akJl, 

corresponds to da~. 
l.J 

with de:~. 
l.J 

de:~ . 
l.J 

All the expressions presented in this section are valid for 

(5.5.27) 

the 3-D case. For 2-D problems the reader is referred to Appendix D 

for further details. 

By simply examining equation (2.4.6) we notice that equation 

(4.6.11) can be applied for the computation of 

is replaced by 

E E' + I 

where I is the identity matrix. This gives 

in which 

g' + ~ 

da~. if matrix E' 
l.J 

(5.5.28) 

(5.5.29) 

(5.5.30) 
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Finally, it is worth mentioning that the problem of indeterminacy 

of the normality principle {see eqn. (5.5.13» at the so-called 

"corners" of the yield surface (typical of Tresca and Mohr-Coulomb 

surfaces) has been overcome by adopting the sUnp1e procedure indicated 

in [98J. This consists of "rounding off" the corners whenever 

lal > [i - 180J and consequently avoids the singularity which occurs 

when lal = i . 

5.6 Initial Stress- Outline of Solution Techniques 

In order to minimize the computer effort for the initial 

stress formulation, equations (4.6.10) and (5.5.29) can be further 

manipulated as discussed in Section 4.6. This leads to 

dy = R doP + dm - - -
and 

doe = S doP + dn 

where 

R = A-1 
9 

and 

S g* - A' R 

Note that as before vectors d~ and d~ represent the elastic 

solution to the incremental problem (actual solution in absence of 

(5.6.1) 

(5.6.2) 

(5.6.3) 

(5.6.4) 

plasticity). Furthermore, equations (5.6.1) and (5.6.2) remain valid 

if instead of incremental loading, the total load is applied. The 

only reason to proceed incrementally being the constitutive equations 

presented in (5.5.23). This enables us to compute load at first yield 

by simply scaling down the total elastic solution by a load factor 

The incremental process starts at this load level and further values 

of the load factor are given by expression (5.3.2) of Section 5.3. 

~ o 
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For elastoplastic solutions, equations (5.6.1) and (5.6.2) 

can therefore be applied as 

y R(aP + ~~p) + A. m 
1 -

(5.6.5) 

and 

e S(aP + ~aP) + A. a n 
1 -

(5.6.6) 

or alternatively for pure incremental relations, 

(5.6.7) 

and 

(5.6.8) 

where in both cases vectors m and n correspond to the application 

of the total load and ~aP stands for the current initial stress 

increment. 

For a typical load increment (i.e., a given value of Ai)' 

the initial stress increment can be determined iteratively at each 

selected boundary node and internal point exhibiting plastic behaviour 

by two different processes. The former is in fact a pure incremental 

procedure. Once the load increment S~ has been applied, the initial 

stress increment corresponding to the solution of the elastic problem 

is computed and has to be applied back into the body, providing 

an elastic stress redistribution. This operation, again generates 

a new initial stress field to be redistributed elastically and so on. 

Iteration is halted when the contribution of the last initial stress 

increment can be neglected. 

The above process is in essence comparable to what was presented 

in [J3] for the finite element method and is summarized as follows: 
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a) Compute elastic stress increment by; 

b) 

eqn. (5.6.8) if first iteration is being performed or 

~cre S ~crp otherwise. 

Find true stress increment ~cr .. (eqn. (5.5.26». 
~J 

c) Verify convergence, i.e.; 

compare ~£p calculated with its accumulated value 
e 

obtained during the current load increment to see if 

it can be neglected. 

d) Calculate initial stress increment by; 

~cr~. ~cr7. - ~cr .. 
~J ~J ~J 

e) Accumulate values of initial stress and true stress; 

cr~ . cr~. + ~cr~. 
~] ~] ~] 

cr .. cr .. + ~cr .. 
~] ~J ~] 

f) Continue with next node or point and start with (b) 

until all nodes and points have been considered. 

g) Go to (a) for a new iteration. 

Iterations are performed until convergence is obtained (within 

prescribed tolerance) at every selected node or point. 

It is interesting to note that in order to avoid cumulative 

errors, ~crp obtained at the end of iterations is applied together 

with sn in eqn. (5.6.8) for the first iteration of the next load 

increment. 

The second process, which proved to be less dependent on 

the load increment size but not always more economical, deals with 
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accumulated values of the elastic stress in a similar fashion to 

the procedure adopted for the initial strain implementation. 

The initial stress increment is kept separate from its 

accumulated value until convergence is obtained as follows: 

a) Compute elastic stress (eqn.(5.6.6» 

b) Calculate elastic stress increment by; 

c) 

t:.a~. 
1.J 

e == 0 .. 
1.J 

- a .• - a~. 
1.J 1.J 

Find true stress increment t:.a •• (eqn. (5.5.26». 
1.J 

d) Verify convergence. i.e.; 

compare t:.£P with its previous value. e 

e) Calculate new estimate of initial stress increment by; 

t:.a~. t:.a~. -t:.a •• 
1.J 1.J 1.J 

f) Continue with next node or point and start with (b) 

until all nodes and points have been considered. 

Once that convergence is obtained fa~ all selected nodes and 

points, the true stress and initial stress increments are accumulated 

and the latter is also used as an initial guess for the next load 

increment. 

Note that neither procedure requires computation of the boundary 

unknowns. Consequently equation (5.6.5) need only be used to print 

the boundary unknowns once convergence is achieved. In addition, if 

the body to be analysed is under an initial (in-situ) stress field, 

these stresses are simply added to the total stress vector at the 

beginning of the entire process. In this case load at first yield 
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cannot be computed by expression (5.3.1) any more, nevertheless any 

approximated value of AO can (provided it corresponds to a pure 

elastic state) be used to start the incremental process. 

Before the application of the above algorithms to solve 

plasticity problems it should be pointed out that although solution 

procedures are incremental, always finite sized load increments 

are prescribed and this may create some drifts of the stress level 

beyond the yield surface. If load increments are kept sufficiently small 

this problem is practically eliminated, but if relatively large load 

increment sizes are to be permitted, special techniques of the type 

presented in references [98, 92, 10~ have been found necessary to 

maintain the stresses on the yield surface. Basically, such techniques 

make use of a subincremental procedure which subdivides the increment 

of elastic stress into a number of subincrements. Consequently, 

relation (5.5.26) is always applied for small subincrement sizes. 

Also, once all subincrements have been considered, the satisfaction 

of equation (5.5.10) is verified and the final excess stress (if any) 

which still violates the yield criterion is added to the initial stress 

increment. 

5.7 Examples - Kelvin Implementation 

Following the solution algorithms presented in the last section, 

the results for a series of examples solved by the boundary element 

technique are now compared with analytical solutions where such 

solutions are available and with finite element results. 
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5.7.1 Notched Tensile Specimen - This example is one.of the very 

early plasticity problems solved by using the finite element technique. 

Plane stress and plane strain results have been presented in several 

papers, creating a good opportunity to compare the boundary element 

computations. 

Material parameters are as follows 

E = 7000. kg/mm 

o 24.3 kg/mm o 

v = 0.2 

H' O. (von Mises yield criterion). 

Plane stress analysis was carried out using the discretization 

shown in figure 5.7.1. Note that symmetry was taken into consideration 

without boundary discretization of the symmetry axes. This is due to 

a direct condensation process which automatically integrates over 

reflected elements and cells in such a way that the size of the final 

matrices corresponds to the reduced number of boundary elements and 

internal points presented. 

Figure 5.7.2 gives the load-displacement curve for this case. 

It is seen that the curve remains nearly straight until very close 

to the limit load, when a sharp bend then occurs. Such behaviour 

was also observed by Yamada et al. [10~ in an entirely similar problem. 

The limit load achieved by the boundary elements (20 /0 = 1.21) 
a 0 

coincides with the results presented by Nayak and Zienkiewicz 098] 

using four different finite elements to analyse the same problem. 

Their limit load was found to vary between 20 /0 = 1.19 - 1.23 a 0 

and simple triangular, isoparametric linear, quadratic and cubic 

elements were used, all four meshes with approximately 97 nodes. 
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Notched tensile specimen. Boundary element 
and internal cell discretization 
(plane stress case). 

1.4 CTo 
(B.E.M.) limit load achieved 1.21 
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Fig. 5.7.2 Load-displacement curve for notched specimen 
in plane stress. 
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Fig. 5.7.3 Load-displacement curves for notched 
specimen in plane strain. 

Yc 
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Fig. 5.7.4 Plastic zones obtained by BEM for different 
load levels (plane strain). 
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For the plane strain case, because of a large spread of 

plastic zone before limit load is achieved, the number of internal 

points and cells was increased from 33 and 51 to 59 and 97 respectively. 

Load-displacement curve is shown in figure 5.7.3 where the equivalent 

finite element results presented by Chen [64J are also given. The limit 

load obtained by BEM (2cra /cro = 1.64) is below the value given by the 

finite element method (2cra /cro = 1.85). But, as stated by Chen, bound 

theorems demonstrate that the maximum load should lie between 1.52 and 

1.73, which supports the boundary element results. 

Spread of plastic zones at lower load levels presented in 

figure 5.7.4 eXhibits good agreement with finite element computations 

Ij3, 64J for the same problem. 

5.7.2 Deep Circular Tunnel - This example was selected to emphasize the 

advantages of boundary elements over "domain"type techniques to solve 

infinite medium problems. 

A circular excavation studied by Reyes [102J and later by Baker 

et al. [103J with linear displacement triangular and quadrilateral finite 

elements respectively is here compared with boundary element results. 

The plane strain problem was analysed under the Drucker-Prager 

simulation of Mohr-Coulomb yield criterion (ex' and K' given by 

expressions(5.5.9)) and by assuming the infinite domain to be initially 

subjected to a uniform stress field of 1 ksi vertical and 0.4 ksi in both 

horizontal directions (Ko = 0.4). For the present study, external loads 

corresponding to the relaxation of this in-situ stress field were applied 

over the surface of the opening. 

The material (rock)was assumed to be perfectly plastic with 

E 500. ksi 

c' 0.28 ksi 

v = 0.2 
<1>' = 30P 
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Fig. 5.7.5 Deep circular tunnel. Discretization used for 
BE results and total spread of plastic zone. 
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Fig. 5.7.6 Final stresses along the horizontal section 
through the medium. 
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Boundary element and internal cell discretization is presented 

in figure 5.7.5 where the plastic zone on complete removal of the 

in-situ stresses from the boundary of the cavity is also given. 

Stresses along the horizontal section computed at the end 

of the relaxation process are compared with the corresponding results 

presented by Reyes and Baker in figure 5.7.6. Here, internal stresses 

outside the discretized region were calculated at simple internal 

points not connected to any internal cells. 

It is important to note that the refinement of the two finite 

element meshes (about 253 nodes) should not lead to the differences in the 

cr values shown in figure 5.7.6. Although no reference was made by the 
y 

authors, this discrepancy is probably due to the outer boundary conditions 

considered in the two analyses. The boundary element technique does not 

require any outer boundary discretization, but in order to study its 

influence in the results a quarter of a circle with radius equal to nine 

times the radius of the cavity was discretized using six boundary elements, 

this is approximately the extent of the finite element meshes. The 

outer circle was then considered to be free to displace, giving as a 

result a better agreement with Baker computations, A second alternative 

was carried out by prescribing zero displacements over the outer boundary, 

leading now to improved agreement with Reyes results. 

5.7.3 Rough Punch - In this example the elastoplastic behaviour of a 

square block compressed by two opposite perfectly rough rigid punches 

is studied. The problem is analysed under plane strain condition and 

the material is considered to be perfectly plastic obeying the von Mises 

yield criterion. 

By using a very refined mesh of 274 linear displacement triangular 

finite elements and 173 nodal points (see figure 5.7.7a), results to 
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Fig. 5.7.7 Geometry of rough punch problem • 
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Fig. 5.7.8 Mean pressure-applied displacement curve 
for rough punch problem. 
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this problem were presented by Chen ~04, 64]. The boundary element 

analysis was performed with the discretization shown. in figure 5.7.7b, 

requiring less than one third of the FE data to run the problem. 

The indentation process was developed by prescribing the flat 

punch displacements leading to the average pressure-applied displacement 

curve presented in figure 5.7.8. As can be seen, agreement between 

the two analyses has been thoroughly obtained, both methods slightly 

exceeding (4%) the theoretical limit load I3p/2a = 2.5. 
o 

5.8 Examples - Half-Plane Implementation 

In the p'resent section the results of some applications of the 

half-plane implementation are compared with numerical and analytical 

solutions presented in the literature. 

5.8.1 Strip Footing - In this example the plane strain analysis of 

a flexible strip footing under uniform loading is presented. The 

finite soil stratum was discretized taking full advantage of both, 

symmetry and free-surface condition, using the reduced number of 14 

boundary elements and 42 internal points as shown in figure 5.8.1. 

The soil was considered to be a perfectly plastic material, 

obeying the associated Mohr-Coulomb (M-C) criterion with 

E 30000. psi 

c' 10. psi 

v = 0.3 

.p' 200 • 
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Fig. 5.B.1 Strip footing on e1astop1astic soil. 
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Discretization used for BE results. 
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Fig. 5.B.2 Load-displacement curves for strip footing 
problem. 
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Fig. 5.8.3 Spread of plastic zones at different load 
levels. Mohr-Coulomb yield criterion. 

An alternative solution was also obtained by using the 

associated Drucker-Prager (D-P) yield criterion given by expressions 

(5.5.7) and (5.5.9). 

Ground surface displacements are presented in figure 5.8.2. 

Also included is the equivalent M-C finite element solution obtained 

by Zienkiewicz et a1. [10SJ using quadratic isoparametric elements 

with 121 nodal points. The collapse loads achieved by the boundary 

element and finite element techniques (M-C) are q/c' = 14.9 and 

q/c' = 15.1 respectively, which agree well with the Prandt1 solution 

(Chen [64J) q/c' = 14.8. As for the D-P results, it is seen that 

although the displacements were larger, the maximum load obtained was 

still not far from the previous ones. 
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Zones of yielding defined by the M-C solution are shown in 

figure 5.8.3. These zones compare well with the reported finite element 

computations. 

5.8.2 Shallow Tunnel - In the last section the elastoplastic boundary 

element technique was applied to solve the problem of a deep circular 

excavation of radius r' in an inifinite medium. The great advantages 

of the technique were then pointed out when comparing results with 

different finite element solutions. Here, an analogous problem is 

studied by considering the tunnel to be shallow, located within a 

semi-infinite domain and with its centre at a depth of 5r'. 

As before, the rock-like material was assumed to follow the 

Drucker-Prager yield criterion (a' and K' as given in (5.5.9», 

with the following characteristics 

E 500. ksi 

c' 0.28 ksi 

v = 0.2 

In order to produce a more realistic analysis,.the semi-infinite 

medium was assumed to be initially under the in-situ linearly varying 

stress field given by the formulae 

(vertical stress) 

(horizontal stresses) 

where is a uniform pressure that may be due to an overburden of 

water or very weak material, y is the unit weight of the rock and 

h is the distance from the ground surface. 
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Fig. 5.8.4 Shallow circular tunnel problem. Discretization used 
for BE results and total spread of plastic zone. 
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-5.0 

-2.5 

'Yr' 

2 3 4 5 

Fig. 5.8.5 Final stresses along the horizontal section 
through the medium. 

To simulate the stress state adopted for the deep tunnel 

(0 = 1 ksi) 
v 

at the depth of the excavation axis, the 

following values were chosen 

o 0.3 ksi 
v 

-2 
Y 8.9 x 10 tb/in3 

r' 131. ft. 

The plane strain analysis was carried out by applying 

increment~ of external loads, corresponding to the relaxation of 

the in-situ stresses, over the boundary of the cavity. The discretization 

employed is depicted in figure 5.8.4 where the total extent of the 

plastic zone is also shown. 
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Final stresses along the horizontal section are presented 

in figure 5.8.5 with the equivalent results from the deep tunnel 

case (see Subsection 5.7.2) included for comparison. Note that 

stress values outside the internal cell region were computed at 

simple internal points. 

The above example clearly indicates the powerfulness of the 

half-plane implementation. Problems of this sort can only be 

satisfactorily solved by using this technique. which requires 

neither ground surface nor outer boundary discretization. 
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CHAPTER 6 

VISCOPLASTICITY AND CREEP USING BOUNDARY ELEMENTS 

6.1 Introduction 

In the present chapter an application of the boundary element 

equations to viscoplasticity is presented. The procedure can be used 

for creep problems as well. The Perzyna's [72-74J approach has been 

adopted since it is appropriate for computer applications and - as 

demonstrated in Chapter 2 - can be used to simulate pure elastoplastic 

solutions. The time-dependent solution is obtained by a simple Euler 

one step proced~re [106-l0S] and some guide lines for the selection of 

the time step length are also discussed". 

The examples presented and discussed at the end of the chapter 

point out the accuracy of the boundary element solution and illustrate 

the potentialities of the technique for these sort of nonlinear 

problems. 

6.2 Rate Dependent Constitutive Equations 

In this chapter we shall restrict ourselves to the solution of 

either creep or elastic/viscoplastic problems in the sense described 

by Perzyna [72]. It is worth mentioning that transient or steady 

state thermal strains could be equally considered by solving a coupled 

boundary element problem, following the procedure presented by Wrobel 

and Brebbia [109] for the thermal part of the problem. 

With reference to Chapter 2 Section 2.3, the static yield 

criterion for isotropic hardening can now be written in general form as 
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F(aij • k) = 0 (6.2.1) 

where as before k represents a hardening parameter which dictates 

the position of the static yield surface in the hine-dimensiona1 

stress space. This condition can be better visualized in the following 

form 

f(a .. ) = 1/I(k) 
1J 

(6.2.2) 

in which F = f - 1/1 and if the work hardening hypothesis is being 

adopted k is given by expression (5.2.3). 

One can notice that the condition expressed in (6.2.1) or 

(6.2.2) does not differ from the corresponding yield condition for 

the so-called inviscid theory of plasticity. Therefore. the different 

expressions for F introduced in Section 5.5 can still be used. This 

encourages a further interpretation; let us designate the scalar 

function of f(a .. ) by ae as before. Such designation allows for 
1J 

the definition of the equivalent plastic strain rate as follows 

(see expression (5.5.11» 

op 
e· . 1J 

(6.2.3) 

Following the generalized normality principle due to Perzyna 

[72-74]. the viscop1astic strain rates are given by 

ClF 
>-

Cla .. 
1J 

(6.2.4) 

where Y. ~ and the symbol < > have been defined and commented 

upon in Section 2.3. 

Equation (6.2.4) can be further written as 
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:.p 
Coij 

which after multiplying both 

o' •• 
!p 
E •• 

1.J 1.J 

186 

df 
dO' •• 

1.J 

sides by a .. gives 
1.J 

[F) <If 
Y < 4J ~J > a .• acr:-:-1.J 1.J 

Assuming that f(aij ) is homogeneous of degree one (a 

requirement satisfied by the yield criteria adopted here) and 

applying Euler's theorem [80J comes 

'p a.. E •• 
1.J 1.J 

> f (a • . ) • 
1.J 

Recalling definition (6.2.3), expression (6.2.7) can be 

finally represented by 

a relation which for F > 0 leads to 

f(O' •• ) 
1.J 

(6.2.5) 

(6.2.6) 

(6.2.7) 

(6.2.8) 

(6.2.9) 

Equation (6.2.9) when compared to (6.2.2) clearly demonstrates the 

explicit dependence of the flow surface on the equivalent plastic 

strain rate. 

As a further illustration, consider the following definition 

. 
E 
e 

. 
a 

....=. + ~p 
E . e (6.2.10) 

. 
in which E is the Young's modulus and E 

e stands for an equivalent 

measure of the total strain rate. Note that in uniaxial problems 

and ~p 
e become the actual total strain, stress and plastic 

strain rates if $ is defined as the uniaxial yield stress. 
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The flow surface can now be written as 

[ ( Ee - a /EJ ] f (a •• ) .. 1/1 (k) 1 + ~ -1 Y e 
1.J 

(6.2.11) 

indicating the explicit dependence of f(aij) on the rate of induced 

strains/stresses. 

For creep problems the equivalent version of expression (6.2.8) 

is assumed to be (see Section 2.3) 

where K is a material parameter and ae 

von Mises equivalent stress. 

(6.2.12) 

f(a •. ) represents the 
1.J 

It is interesting to note that the time-hardening function 

tn can be removed from (6.2.12) by the following transformation [110] 

(6.2.13) 

where t denotes a transformed time leading to 

(6.2.14) 

This means that the problem can be solved in terms of a fictitious time 

which relates to the true time t by means of the inverse relation 

t .. [ In!l 
t(n+l) • (6.2.15) 

Different time hardening functions can be equally transformed 

by the above procedure assuming that (6.2.12) is taken from experimental 

analysis under constant stress. 
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The creep strain rates can therefore be written as 

.c 
e: •• 
~J 

K m af 
CJ --

e aCJij 
(6.2.16) 

where the dot indicates derivative with respect to t if n ~ 0 • 

Equation (6.2.16) corresponds to the Prandt1-Reuss equations 

and can be cast into the form of (6.2.5). In both cases the corresponding 

initial stress rates can be computed by the simple relation 

where 

·a CJ •• 
~J 

d •• 
~J 

y < \li > d .• 
~J 

(6.2.17) 

(6.2.18) 

Herein, for the boundary element implementation, the initial 

stress equations have been adopted since they present the advantage 

of handling compressible or incompressible inelastic strains in plane 

strain or plane stress problems with minor alterations. The relevant 

2-D forms of the above relations are presented in Appendix D. 

In order to apply equations (4.6.10) and (4.6.11) to the 

solution of time-dependent inelastic problems, the manipulations 

introduced in Section 4.6 can be performed resulting in the following 

matrix equations 

(6.2.19) 

and 

;; = V aa + Ii (6.2.20) 
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where vectors 
. 
m and 

. 
n are given in (4.6.16) and (4.6.19), matrix 

R was defined in (5.6.3) and the new matrix V is given by 

V Q - A' R (6.2.21) 

in which 

Q Q' + E' (6.2.22) 

From the above it is seen that (see expression (6.2.17» 

equation (6.2.20) represents a system of ordinary differential 

equations for stresses at selected boundary nodes and internal 

points which can be solved by standard methods (provided it satisfies 

the Lipschitz condtion [106-l08J), producing a unique solution to the 

time-dependent problem. A simple and efficient solution procedure 

for this matrix equation is the subject of the next section. 

6.3 Solution Technique 

For the solution of the examples presented in this chapter, a 

simple Euler one-step procedure ~07J has been adopted in the following 

fashion; let us assume a load factor A(t) which is considered to 

be a known function of time. Equations (6.2.19) and (6.2'.20) can be 

integrated on time to give 

y R qa + A (t) m (6.3.1) 

and 

cr V cra + A(t) n (6.3.2) 

where vectors m and n correspond to the elastic solution at some 

reference load level. 
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For the time marching procedure, equation (6.3.2) is applied 

after each discrete time step (~t = k+lt - kt ) with the value of the 

initial stresses being computed at selected boundary nodes and internal 

points by the Euler's formula 

k+l a (J .. 
1.J 

k(J~. + ~t Y < kq> > kii ... 
1.J 1.J 

(6.3.3) 

During this process one may have that A(t) is left constant 

for some time, creating a situation in which after a sufficient number 

of time steps has been applied, the values of "~t E~" or 

become vanishingly small everywhere. In such cases a stationary condition 

is deemed to have occurred and the time marching scheme can be stopped. 

It is interesting to note that the time integration procedure 

does not require computation of the boundary unknowns. Consequently, 

equation (6.3.1) need only be used to print the boundary unknowns at 

some requested time/load values. 

The success of this simple time integration scheme is dependent 

on the proper selection of the time step lengths. It has been known 

for quite some time [110] that ideally small time steps should be 

applied in the early stages of the computation (i.e., after the application 

of the load or load increment) and that these can be increased in 

size as stationary or steady state is approached. 

Following the experience of many authors [110 - l13J with 

different spatial discretization techniques (mainly finite elements), 

the time step size should be controlled by a relation between accumulated 

and rate value of some variables to produce the above described 

automatic lengthening as asymptotic state is achieved. This can be 

considered at each node or point as follows 
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E 
e 

'a 
E e 
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(6.3.4) 

(6.3.5) 

where and are problem dependent parameters that should be 

chosen to compromise between computer time and accuracy. Normally, 

0.01 ~ nl ~ 0.15 and 1.2 ~ nO ~ 2 • 

A drawback of relations (6.3.4) and (6.3.5) is that they do 

not guarantee complete stability of the explicit time integration 

scheme, particularly near to the steady state which produces large 

time step values. Useful bounds for the maximum time step length 

have been presented by Cormeau [114J for perfectly viscoplastic 

materials, these can be seen to correspond to the pure relaxation 

problem 

E •• 
1J 

'a 
E •• 
1J 

o 

Herein, in addition to the above referred bounds, an approximate, 

(6.3.6) 

yet general, limiting value for the dme step has been adopted. It 

is expected that it will bring some light into the case of hardening/ 

softening viscoplastic materials. 

Recalling expression (6.2.10) in rearranged form one gets 

where for o , 

(J 
e 

-Ey<q,> 

(6.3.7) 

(6.3.8) 
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Equation (6.3.7) in equivalent stress form can be used to 

study a bound [106] for the stability condition of the simple Euler 

procedure adopted here. Thus, the coupling of equations (6.3.7) and 

(6.3.3) leads to the equivalent relation 

(6.3.9) 

Let us now accept that throughout the time marching process 

truncation and roundoff errors have been committed. The global 

error at time kt is then given by 

k 
p 

k k~ 
CJ - CJ e e 

where CJe represents the value of CJ e obtained through an exact 

integration on time of equation (6.3.7) which corresponds to the 

exact solution of equation (6.3.2). 

(6.3.10) 

Assuming that the error p is sufficiently small to allow 

a truncated Taylor's expansion of 

(t kCJ~) + k g , p 
e 

about CJ e ' comes 

_il_g_( t-:',-k_a;:;.e_) + •••• 
ilCJ e 

The substitution of (6.3.10) for kt and k+lt in 

equation (6.3.9), together with (6.3.11) gives 

If a stationary state is likely to have occurred, 

o 

(6.3.11) 

(6.3.l3) 
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hence, 

k+1 k[ k(Cl~J] p = p 1 - ~t Y E aOe (6.3.14) 

In order to ensure that errors remain bounded (stability), 

one has that Ik+1pl ~ Ikpi , which gives 

2 (6.3.15) 

Taking into consideration that for work hardending viscop1astic 

materials 

l!... = ~,[ L- °e !!1 ~ ] 
Clo 1/1 ,/,2 dk do e 0/ e 

where ~'= d~/d [~) , one finally gets 

in which for 1/1 = 00 one has 

For creep problems the equivalent expression is 

2 
K E m c?-1 

e 

(6.3.16) 

(6.3.17) 

(6.3.18) 

and if equation (6.2.12) is used instead, the term t n should appear 

in the denominator producing the same critical time step obtained by 

Cormeau [114J and Irons [115] when v ~ 0.5. 

In order to study the effect of hardening in the critical time 

step let us consider the case ~'= I, d1/i/d E: = H' = constant. In this 
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case expression (6.3.17) simplifies as follows 

(6.3.19) 

where the relation with Ee· constant was used. 

The above relation indicates that when H' > 0 , the effect 

of hardening produces an initial reduction in the critical time step 

(when compared to the case H'· 0), and that as viscop1astic flow 

progresses this limit is increased with the square of a • One can o 

notice that this is not the case when H' < 0 (softening), here the 

time step limit is initially increased but diminishes as viscop1asticity 

develops, producing a reduction in the region of stability which must 

not be overlooked in such cases. 

In the next section ,the results of some examples solved in the 

light of the theory presented in this chapter are compared with existing 

results taken from the literature. 

6.4 Examples 

An interesting feature of the e1astic/viscop1astic theory (see 

Section 2.3 of Chapter 2) is that if the load is applied in small 

increments, allowing for stationary conditions to be achieved after 

each load step, a pure e1astop1astic solution is obtained. The question 

of how small these increments should be taken still remains an open 

question and is in fact problem dependent. In the first example 

presented here this feature is fully explored for solving a current 

e1astop1astic problem. But in the second and third applications, the 
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total load is applied in one step and two problems of the type power 

law creep and quasi linear viscoplastic are analysed. 

In addition, a further test was carried out with the problem 

of a rigid punch (elastoplastic) in a strain softening material presented 

in Subsection 5.4.3. The results are not shown here for they are 

virtually the same as those presented in Chapter 5. Nevertheless, 

it should be pointed out that the stability criterion was successfully 

applied, avoiding premature instability as viscoplastic flow progressed 

beyond a certain stage. 

6.4.1 Deep Beam - In the first example the elastoplastic behaviour 

of a simply supported deep beam under uniform load is studied by the 

viscoplastic boundary element technique. The discretization employed 

is shown in figure 6.4.1 and the material is assumed to obey the Tresca 

yield criterion with the following parameters 

E .. 30. x 106 psi 

°0 36. x 103 psi 

v .. 0.3 

Hf o. [~(~ F 
-1 l = - y = 1. sec 

1/1 

This problem has been analysed by Anand et al. [116} by using 

a mesh of 272 linear displacement triangular finite elements, which 

corresponds to 33% more elements on the boundary than the discretization 

used here. 

A comparison of results is depicted in figure 6.4.2 where the 

load-midspan displacement curves, for both numerical techniques, 

are plotted together with the beam theory solution [62]. As can be seen, 
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the boundary element solution asymptotically approaches the limit load 

obtained by the beam theory, whereas the finite element resuls slightly 

exceed this load level. A vanishing small difference is already 

noticed in the elastic results, with the BE technique predicting a 

lower load value for initial yield and larger displacements for the 

same load level. The plastic zones produced by both techniques were 

in good agreement with the beam theory, therefore are not shown here. 

A further confirmation of the BE results was obtained by 

solving the same example using the pure elastoplastic implementation 

of Chapter 5 (initial stress approach). Remarkable agreement was 

then achieved in eVery aspect of the solution (differences within 

prescribed tolerance for convergence/stationarity), 

6.4.2 Thin Disc - Accurate bounds for the creep problem of a thin disc 

with a central rigid insert under constant external edge load were 

produced by Sim [117J. These were obtained by direct time integration 

of the analytical solution and presented in dimensionless form using 

the so-called "reference stress" technique. In order to test the boundary 

element performance in the same problem, the following material 

parameters were chosen 

E 17. x loG psi 

" 0.33 

5.8 x 10-18 (units lb, in and sec.) 

The geometry and load value are given in figure 6.4.3 where 

the boundary element and internal cell discretization is also shown. 

Notice that improved axial symmetry waS obtained by avoiding boundary 

discretization of the symmetry axes. 
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Radial displacements computed over the outer boundary are 

plotted against time for comparison with the solution bounds in 

figure 6.4.4. As expected. the boundary element technique produces 

a flat curve which lies within the narrow space between the two 

limiting lines taken from the reference. It is interesting to note that 

the slope of these parallel lines was calculated for an approximate 

stationary condition in which the variation of the displacement rates 

was 1%. Consequently. the same stationarity criterion was ~dopted 

here. generating the final straight part of the curve. 

6.4.3 Plate Under Thermal Shrinkage - In this example the analysis of 

a rectangular plate. bonded on one edge to a rigid support and subjected 

to a sudden uniform temperature drop is 

shrinkage was assumed to be such that 

presented. 

e::. = - 0.01 
1.J 

The thermal 

<5.. • The problem 
1.J 

can be properly solved by prescribing tangential displacements 

corresponding to e: .. = 
1.J 

T - e: ij over the fixed edge and computing 

the final displacements by simple superposition. 

The material was assumed to be quasilinear (~ (F /l/J) F /1jJ ) 

ideal viscop1astic. obeying the von Mises criterion. 

Due to symmetry. only half the plate was discretized using 

26 boundary elements and 17 internal points located in the region 

near to the restrained edge as shown in figure 6.4.5. Also included 

is the plastic zone produced by the mstantaneous cooling process. 

Finite element results for this problem hav.e been presented 

by Zienkiewicz and Cormeau [112J. They used a mesh of 96 quadrilateral 

elements which was equivalent in size to the boundary element 

discretization over the bonded edge (A-B). but presented more refinement 

over the opposite edge (C-D). 
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An interesting comparison of results is depicted in figures 

6.4.6 to 6.4.8 where the stresses computed at the fixed edge are 

shown for times t = 0 (elastic) and t + w when stationary condition 

is achieved. These include not only the FE and BE results, but also 

the sufficiently refined elastic finite difference solution produced 

by Bauer and Reiss ~18]. which provides a useful reference result for 

t = 0 • 

It is worth mentioning that neither method can predict the 

infinite value of the elastic stresses at the corners of the fixed 

edge. Consequently, a localized perturbation in the solutions is 

expected in the vicinity of corner B. Nevertheless, even though 

we neglect the results near to the singular node, one can notice that 

the boundary elements tend to produce a better representation of the 

singular behaviour than the finite elements. This difference may be 

partly explained by the fact that the FE stresses were calculated at 

the Gauss points (2 x 2 integration) and is particularly apparent in 

figure 6.4.7 where the a stresses are noticeably unequal over a 
y 

large range. 

A final comparison is presented in figure 6.4.9 in which the 

equivalent plastic strains computed by the boundary element technique 

are indicating a more severe concentration of plasticity near the 

corner than the finite element results. 
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CHAPTER 7 

GENERAL DISCUSSION AND CONCLUSIONS 

The present work was primarily concerned with the application 

of the direct boundary element method to solve inelastic problems in 

continuum mechanics. In spite of this, Chapter 3 presented the complete 

formulation of the technique for pure elastic problems. This included 

not only the implementation of the Kelvin fundamental solutions 

(3-D and 2-D plane strain/stress) but also the complete expressions 

of a new fundamental solution suitable for half-plane type problems. 

In addition, the numerical discretization of the integral equations 

was discussed in detail for 2-D problems and the results of some 

classical examples were presented to illustrate the applicability of 

the half-plane boundary element technique. 

From the examples shown in the above referred chapter, it was 

readily seen that such a solution procedure is more accurate than 

discretizing the semi-plane using finite elements or even using the 

Kelvin fundamental solution, which would necessitate defining a closed 

boundary or using elements tending to infinity. Here, some further 

comments regarding the computational efficiency of the procedure can 

be made; first of all, since the tensors corresponding to the half-plane 

fundamental solution (c > 0) are longer than those of Kelvin's, one 

should expect a certain increase in computer time for the numerical 

integrals. This difference, however, is compensated by three important 

features of the solution. In the first place, integration over the 

traction-free part of r-r' is now unnecessary and furthermore, one 
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of the boundary: integrals is always performed over r' only, which 

also provides some saving in computer time. Secondly, when c = 0 

the resulting expressions (see (3.3.22) and (3.3.23» are shorter 

than the Kelvin counterparts. Finally, the resulting system of 

equations is usually of a reduced size since the boundary may be 

left "open" in many cases. Therefore, the half-plane boundary 

element procedure is found to combine both, accuracy and computational 

efficiency for problems concerning the semi-plane. 

It is interesting to note that the half-plane implementation 

can also be used for bounded bodies where the boundary r is entirely 

located within the semi-plane Xl> 0 (r = r'). In such cases the 

results produced are in every aspect equivalent to the solution 

obtained by using the Kelvin implementation, but the computer time 

required would be larger than the standard boundary element solution, 

since all the above mentioned compensations disappear. This feature, 

however, has been explored during the course of this research for 

debugging the computer programs. 

Following the original purpose of this work, the extension of 

the boundary element equations to handle inelastic problems (3-D 

and 2-D) was thoroughly discussed in Chap.ter 4. Here, a proper 

procedure for obtaining the complete expressions for stresses at 

internal points was presented and three alternative formulations were 

proposed; namely initial strain, initial stress and fictitious tractions 

and body forces. In order to outline the potentiality of the boundary 

element method,the 2-D case was taken further and the spatial 

discretization of the initial strain/stress equations was presented 

in matrix form. To this end, the apparent difficulty in computing 

the principal values of the domain integrals (associated with 
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the inelastic terms), was overcome by employing two different 

procedures. The first is outlined in Appendix A and is entirely 

general, the second consists of actually evaluating the integrals 

by employing a semi-analytical integration scheme which proved to 

be accurate and efficient for the case of triangular cells with linear 

interpolation functions. It should be pointed out that both procedures 

were originally implemented in the initial strain computer program 

and, for the cases studied, the latter has required slightly less 

computer time for the total computation of matrix B. Therefore, 

the same semi-analytical integration procedure was used for the 

initial stress formulation. It is expected that, because of its 

generality, the former procedure can be used for higher order cells 

where a semi-analytical scheme may be difficult to implement. 

The application of the boundary element equations to plasticity 

problems was the object of Chapter 5, where a complete description 

of the different solution techniques adopted was given. The examples 

presented indicate a good performance of the boundary element technique 

when compared to finite element results for the same problems. A 

considerable reduction in the amount of data required to run a problem 

can be achieved for the same degree of accuracy. Internal cells, for 

instance, are only needed in the region of plasticity and they do 

not require any special connectivity as the problem unknowns are 

originally defined on the boundary of the body. 

Problems such as applied displacements, strain softening 

and stress concentration were seen to be solved by using a relatively 

small system of equations and achieving an accuracy only obtained 

with more complex finite element grids. In addition, bodies with 
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boundary at infinity can be properly modelled by using boundary 

elements. This property is of great significance in problems 

connected with foundations, mining engineering, tunnels, etc., and 

is, without doubt, a great advantage of the e1astop1astic boundary 

element technique for problems concerning infinite or semi-infinite 

regions. 

Also, from the examples presented and many other tests 

performed during the period of this research, some interesting featUres 

of boundary elements were observed. Among these features it is 

worth mentioning that the consideration of symmetry without actually 

discretizing the symmetry axes often leads to improved results when 

compared to the alternative procedure which define such axes as 

physical boundaries. In addition, as already indicated in references 

[?, 24J, the elastic boundary element technique is applicable to 

incompressible materials (i.e., v = 0.5). Herein, this property is 

retained in the initial strain formulation and this is naturally 

possible due to the e1astop1astic relations employed (plastic strain 

increments are computed from the modified total strains). 

Another important characteristic of the implementations 

described is that they overcome the well-known disadvantage of finite 

elements first reported by Nagtegaa1 et a1. [120J ; i.e., the occasional 

impossibility of representing properly the limit load due to the 

severe constraints created by the incompressibility of the plastic 

strains. This difficulty is always present when internal strains are 

computed from the derivatives of the interpolated displacements within 

the finite elements, and is effectively noticeable in 3-D and plane 

strain problems. 
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The marked difference between the BE and FE collapse loads 

depicted in figure 5.7.3 of example 5.7.1 (notched tensile specimen 

in plane strain) may well be explained. by the above argument. 

Still with reference to the pure elastoplastic BE formulations, 

a question is now posed; 

Which procedure is more efficient? 

The answer can only be obtained in the light of experience. Regarding 

to precision, the examples solved show that if load increment is kept 

small, the initial strain and both initial stress processes lead to 

entirely equivalent results (differences within the prescribed 

tolerance for convergence). Nevertheless, with relation to computer 

time, the initial strain version has proved to be faster than the 

initial stress. This difference, however, seems to be markedly due 

to the fact that in contrast with the initial strain program which 

is restricted to von Mises yield criterion, both versions of the 

initial stress routine are more general and can handle four different 

yield criteria. 

As load increment was increased, the initial strain and the 

second initial stress versions exhibited more stable results than 

the former initial stress procedure, despite special techniques 

to avoid stress drifts beyond the yield surface. But in some of the 

examples run with relatively large load increments, the pu~e 

incremental form of the initial stress program produced equally 

reliable results, requiring less computer time than its second version. 

The above discussion demonstrates the equivalence of the three 

processes and furthermore shows that the efficiency of the procedure 

is problem dependent. Ideally, all three options should be available 

for a general case. 
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Example No. Title Load increment III (%) 

5.4.1 Perforated Aluminium Strip 5. 

5.4.2 Polystyrene Crazing Problem 25. 

5.4.3 Plane Strain Punch 25. 

5.4.4 Thick Cylinder 5. 

5.7.1 Notched Tensile Specimen 12.5 

5.7.2 Deep Circular Tunnel 20. 

5.7.3 Rough Punch 25. 

5.8.1 Strip Footing 12.5 

5.8.2 Shallow Tunnel 20. 

III = 6/AO (see expression (5.3.2 » 
t approximated value 

Table 7.1 Load increments with reference to load at 
initial yield. 

In order to complement the examples shown in Chapter 5, 

t 

t 

table 7.1 presents the load increment values adopted with reference 

to load at first yield. It should be noted that in the examples 

where a limit load was obtained, the load increment was subdivided 

further near to the collapse situation. This provided a more 

accurate estimate of the load bearing capacity. 

According to the experience of the examples it was also 

observed that in cases where stress singularities (i.e., 0 •• + 00) 
1.J 

occur at certain points (the edge of a rigid punch for instance), 

the value of the load increment could be increased to 50% or more 

without any significant change in the overall solution. Such 
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cases can be identified by an initial localized plastic region which 

starts to increase at much higher load levels. The rough punch 

problem (example 5.7.3) was found to be a typical case. 

As for the number of iterations. a limiting value is left 

to be specified. This maximum should be such that under normal 

circumstances. when this number of iterations is achieved. a collapse 

situation is deemed to have occurred. This is often the case in 

problems where non-zero tractions instead of displacements are 

prescribed. and the material is perfectly plastic. Therefore. such 

a maximum number should be large enough. to produce an accurate limit 

load. For the majority of problems solved, 200 iterations have been 

sufficient. but this could be increased to 300 if necessary. 

The inclusion of time-dependent effects was accomplished 

in Chapter 6. This chapter presented a complete solution technique 

for viscoplastic problems using the constitutive equations due to 

Perzyna. The procedure is simple to implement numerically and is 

capable of handling pure creep problems in the same fashion. Also, 

elastoplastic solutions can be obtained by applying small load 

increments followed by stationary conditions. 

The examples discussed illustrate the potentialities of the 

formulation and demonstrate that solutions for these classes of 

problems which were until recently the object of the finite element 

method as the only efficient alternative. are now possible within 

the context of the boundary element technique. 

Since the boundary element equations are basically the same as 

those in Chapter 5.the same characteristics concerning symmetry and 

load bearing capacity are retained here. However. with reference to 
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the limit load when non-zero tractions are prescribed instead of 

displacements, a collapse situation is now characterized by ~p ~ 0 
e 

as t+ =. Consequently, when simulating pure e1astop1astic 

solutions, a limiting number of time steps is desirable. According 

to the author's experience, a good number of these problems can 

be solved by adopting a constant time step length equal to the 

stability limit (note that stability does not guarantee accuracy). 

In such cases a maximum number of 200 time steps was found sufficient. 

Example 6.4.1 (deep beam) belongs to this class and was here solved 

by prescribing load increments of 6.25% of the load at first yield. 

So far in this chapter, no comparison between the computer 

time required for the BE and FE solutions has been made. This is 

because such information was not readily available for the 

finite element results. Regarding example 6.4.3 (plate under thermal 

shrinkage), the computer time for the FE solution is given in reference 

~19J, where a CDC 7600 was used. Herein, all the computer codes 

were implemented in the IBM 360/195 of the Rutherford Laboratory. 

Thus, a comparison of the overall solution times is given in Table 7.2 

below. 

Method Computer CPU time (sec.) No. 

FE 

BE 

CDC 7600 20. 

IBM 360/195 10.9 

Table 7.2 Comparison between computer time for 
example 6.4.3. 

time steps 

69 

91 



www.manaraa.com

216 

It is worth mentioning that the finite element solution was 

computed by adopting a time step size control similar to what was 

presented in expressions (6.3.4) and (6.3.5) ("1 = 0.03 and "0 = 1.5 

for both methods) and that the same time step limit was employed for 

both solutions. Therefore, the fact that the BE solution required 

a larger number of time steps to achieve stationary condition is 

entirely explicable by the better representation of the singularity 

at the corners of the bonded edge and also by the exagerated 

stationarity criterion adopted here, i.e. 

However, even though the number of time steps were larger, the BE 

solution is seen to be very efficient. Notice that the CDC computer 

is faster than the IBM, which makes the difference in equivalent 

CPU time even more pronounced. 

In order to provide some comparison between the computational 

efficiency of the different solution procedures described throughout 

this work, the e1astop1astic example 5.4.2 (polystyrene crazing 

problem - uniaxial tension) was solved by the initial strain, both 

initial stress and the "viscop1astic" procedures. The total number 

of iterations/time steps, together with the average number per 

displacement increment are presented in table 7.3. It should be 

noted that for the viscop1astic simulation, constant time steps 

equal to the stability limit were applied. In this case, the final 

resultant load obtained (see fig. 5.4.7b) differ from the pure 

e1astop1astic solutions (initial strain/stress) by 0.4%, which shows 

that the accuracy of the solution did not deteriorate much. However, 

by using 6t = 6tCRIT/2 this difference dropped to less than 0.1%, 

but the total number of time steps increased to 170 and its average 

per displacement increment became 18.89. 
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-Procedure n n 

initial strain 158 17.56 

first initial stress 157 17.44 

second initial stress 156 17.33 

"viscop1astic" 86 9.56 

n = total number of iterations or 
time steps. 

-n = average number per displacement 
increment. 

Table 7.3 Comparison between different procedures for the 
solution of example 5.4.2 (uniaxial tension case). 

The computer time required for the total solution of the problem 

is presented in table 7.4. These values correspond to table 7.3 and 

clearly indicate that the viscop1astic simulation for pure plasticity 

problems can, in some cases, result in the most efficient procedure. 

Nevertheless, this should not be taken too far, since accuracy is 

not guaranteed by a constant time step equal to the stability limit. 

Procedure CPU time (sec.) 

initial strain 11.8 

both in. stress 12.4 

"viscop1astic" 11.1 

Table 7.4 Comparison between total computer time corresponding 
to table 7.3. 

It is worth mentioning that although the applications described 

in these notes were restricted to associated p1astic/viscop1astic 

material behaviour, this does not constitute any limitation to the 
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boundary element technique. Non-associated plasticity or viscoplasticity 

can be implemented with equal ease and the same can be said about 

kinematic hardening models under cyclic or repetitive loading conditions. 

All the equations introduced in Chapter 4 remain valid for such cases. 

An interesting remark concerning inelastic applications of 

the boundary element method is that non-homogeneous problems can 

also be included. Here, two different procedures can be followed. 

The first possibility is by introducing sUbregions [I, 2, 23-25J, 

which consists of defining internal boundaries limiting homogeneous 

regions within the body. Another valid procedure would be utilizing 

the internal cells to integrate an initial stress field which 

compensates for the different material constants. This second 

possibility appears to be promising, since both initial stress fields 

can be considered in a unified manner. However, further tests 

regarding to accuracy and computational efficiency will indicate the 

most suitable process. 

Finally, with reference to extending the present work, 

axisymmetric inelastic problems can be dealt with by using the 

appropriate fundamental solution [122, l23J and following exactly 

the same procedures presented here. An initial attempt to formulate 

the boundary element technique for this sort of problems has 

recently been reported by the present author and co-workers in 

reference [12lJ. 
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APPENDIX A 

INDIRECT COMPUTATION OF PRINCIPAL VALUES 

In what follows a simple and general numerical procedure to 

calculate the principal values of the inelastic strain integrals 

is proposed [46J. It is expected that it will allow higher order 

interpolation functions to be used and consequently the numerical 

approximations would be improved. 

For simplicity and without loss of generality for the three 

dimensional case. equation (4.6.9) of Chapter 4 will only be considered. 

This equation is repeated here for completeness 

. 
a G' P - H' u + (D' + C') ~a (A.1) 

where in order to concentrate the attention to the domain integrals. 

the expressions for stresses at boundary nodes (see Appendix B) are 

not included. 

To understand better the difficulties that arise in computing 

matrix D' • let us consider the triangular cell with linear inter-

po1ation functions of figure 4.7.1. In this case. with reference 

to expression (4.7.17), one notices that if the internal point where 

the stress rates are to be calculated is different from points 1, 2 or 3 

(herein it is assumed that no internal point is located inside cells). 

no difficulty arises and one can integrate numerically as usual. 

When the singular point coincides with one of the corner points, 

point 2 for instance, no standard integration over the cell. corresponding 

to integrands where ~2 appears, is permissible and we need to calculate 
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the principal value taking into consideration all the adjacent cells 

connected to point 2. Integration where ~l and ~3 appear will 

be allowable because although r assumes zero value at point 2, the 

interpolation functions are also zero at this point. 

One can easily verify that for any kind of interpolation 

functions or cells shape, always a 3 x 3 block corresponding to each 

internal point remains to be calculated in matrix D'. The analytical 

calculation of such principal values may produce complex limiting 

expressions, but it is here proposed to cJmpute these blocks by 

a numerical procedure based on the fact that a free body, under the 

application of an inelastic strain field, will have no internal 

stresses if the field satisfies the compatibility conditions [75J (see 

equation (2.2.26». Constant inelastic strains satisfy this requirement, 

and the boundary displacements can be determined as functions of the 

differences between the Cartesian coordinate of the boundary node 

under consideration and a reference point which is supposed to be 

fixed with zero rotations (Appendix C presents such expressions). 

In this case, equation (A.I) assumes the form 

-a (D' + C')E = H' u. (A.2) 

As before, let us call (D' + C') by D* where C' is known 

but the above mentioned 3 x 3 submatrices of D' are to be determined. 

Furthermore, C' is non-zero only where D' is unknown, which means 

that all the terms of D* other than the unknown 3 x 3 blocks are 

equal to the corresponding D' terms. 

Hence,equation (A.2) can be written as 

H' u (A.3) 

or, in expanded form 
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[ ] 
i-a 
En 

i-a 
El2 

i-a 
E22 

H' U (A.4) 

Since equation (A.4) is valid for any constant inelastic 

field, one can first assume that -a 
En = I while 

This will produce a series of independent equations which give the 

terms of the first columns. of all the 3 x 3 blocks. 

The same procedure can be used for I . , 

and for -a 
E22 = I 

-a -a 
Ell = El2 = 0 , and they will give respectively 

all the terms of the second and third columns of the unknown blocks. 

The above numerical scheme allows for the computation of the 

principal values together with the corresponding free terms. However, 

one of the advantages of the boundary element technique applied 

inelastic problems is that the domain discretization is only necessary 

where inelastic strains actually occur. The present procedure appears 

to loose this advantage because the entire domain has to be discretized 

to consider the constant inelastic strain fields. 



www.manaraa.com

2~ 

Fig. A.1 Internal region corresponding to all adjacent 
cells connected to the stress point i. 

To avoid this disadvantage a somewhat less restrictive 

implementation can be used. It has been shown that only the 

cells connected to the singular point need to be considered to 

determine the corresponding unknown submatrix. Let us consider 

the part of the domain formed by such cells as shown in figure 

A.1. One can apply equation (A.3) to this small region where 

point i is the only interior point and proceed as before to 

calculate the three columns of the corresponding unknown block. 

In this case equation (A.3) gives 
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i H, -
If 

(A.S) 

where n is the number of internal cells connected to point i and 

i H, as well as ~ are defined over the boundary of this small region. 

It should be noted that for computational purposes the contribution 

of each cell to block i is obtained while actually computing matrix 

'd ; i.e., after pe£forming the allowable integrals over the cell, 

the same routine that performs the boundary integrals of ~' is 

called to integrate over the opposite side of the cell. The appropriate 

operations are then carried out and matrix 'd becomes ready to be 

assembled in complete form, including not only the principal values 

but also the partial contribution of the corresponding terms of g'. 

The use of constant strain fields to compute the principal 

values of the inelastic strain integrals offers many computational 

advantages, since it is independent of the type of cells and allows 

the use of higher order interpolation functions without any increase 

in complexity. 
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APPENDIX B 

STRESS RATES AT BOUNDARY NODES 

Figure B.I presents a linear boundary element with reference 

to its local coordinate system. 

'I = 1 'I =-1 
2X1 

'1= 
X1 

l 

I· ·1 

Fig. B.I Linear boundary element and local coordinate system. 

The interpolation functions can be written as 

N. 
1 

N. 
J 

I 
Z(l-n) 

I 
Z(l+n) 

Displacement rates over the boundary element can be 

calculated using expressions (B.I) and (B.2) 

where and are the nodal displacement rates 

at nodes i and j with reference to the local axes. 

(B. I) 

(B.2) 

(B.3) 

(B.4) 
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The component of the total strain rate tensor along the 

element axis is easily evaluated as 

(B.5) 

The traction rate vector in the local coordinate system will 

give directly two component~of the stress rate tensor at any of the 

two boundary nodes. In what follows the computation of the only 

unknown component of the stress rate tensor at node j will be 

presented, but the same procedure is applicable to node i • 

The components of the traction rate vector at node j give 

j. 
0'22 

j. 
P2 (B.6) 

j. 
0'1:2 

j. 
Pl (B.7) 

Starting with the plane strain case, one can write expression . 
(2.4.5) (8 = 0) for ja22 as follows 

(B.B) 

which gives 

(B.9) 

Rewriting expression (2.4.5) for 
j. 
O'u and substituting 

j. 
£22 calculated above, we find 

(B.lO) 

Proceeding as before, but using equation (2.4.5) for plane 

stress, the following expression arises 
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1 (2G~ll + v ja ) -.2.2. j ~al 
l-v 22 l-v 1 

(B.ll) 

where 

v = vI (l+v) • (B.l2) 

For the initial stress formulation the procedure is analogous. 

The final expression is given by (plane strain) 

v 
+l.,..v 

where for plane stress v is replaced by v. Note that the 

condition of incompressibility of the inelastic strains is not 

included any more. 

Replacing j by i in (B.lO), (B.ll) and (B.l3), the 

equivalent expressions for node i are obtained. 

It should be noticed that after performing the required 

coordinate transformations (local to global axes), the above 

(B.l3) 

expressions become ready to be assembled into the corresponding global 

matrices. Here, the contribution of adjacent elements to the common 

boundary nodes is automatically averaged for non-double nodes. 
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APPENDIX C 

DISPLACEMENTS DUE TO CONSTANT INELASTIC STRAIN FIELDS 

Recalling expression (2.2.24) of Chapter 2, one can easily 

verify that the displacements of any boundary node in a free body 

due to a constant inelastic strain field can be calculated with 

reference to a point which has zero displacements and zero rotations 

by simply using the total strain components, i.e. 

U. 
1 

(C.l) 

where ~x. is the difference between the j coordinate of the node 
J 

and the reference point. 

. 
A 

In plane strain problems, because of e 0 and £33 0 

conditions, the following relation arises 

(C.2) 

For the plane stress case, the equivalent expression is simply 

(C.3) 

Expression (C.l) together with (C.2) or (C.3) provides the 

required expressions for the displacements. 
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APPENDIX D 

SOME PARTICULAR EXPRESSIONS FOR 2"D INELASTIC PROBLEMS 

With reference to the initial strain formulation of Section 5.2. 

the following expressions are valid for 2-D plasticity problems: 

o z 

e' =!. [0 - \I (o + 0 )] + t.eP 
x E x Y z x 

o 
e' = E.. + t.eP 
xy 2G xy 

e' z 

(plane Strain) 

(plane stress) 

(plane strain) 

(plane stress) 

(e' - e')2 + (e' - £,)2 + (e' - e')2 + 6(e' )2 
x y Y z z x xy 

e' - e') 
y z 

(D.l) 

(D.2) 

(D.3) 

(D.4) 
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For the initial stress formulation of Chapter 5 it is 

convenient to write a .. 
~J 

in vector form as follows 

all 

2a12 
a = (D.5) 

a22 

a33 

In addition, d .. 
~J 

defined in Chapter 6 expression (6.2.18) 

can be represented for plane strain in the following form 

all + W 

d 2G 
a12 

w = 1~2v (all + a22 + a33 ) (D.6) 

a22 + w 

a33 + w 

whereas for plane stress 

all + w 

a12 \i 
d 2G 

w= __ 
(all + a22 ) . (D.7) 

a22 + w l-2v 

0 

The above vectors allow expression (5.5.22) and (5.5.26) 

to be written as 
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in which 
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y' 

do 

r 

doe d e 
x x Ox 

do doe doe 
xy 

-1 
xy 1 - T xy - -~ ~ 

dO' doe y' doe 
y y y 

do doe dO; 
z z 

(plane strain) 

(plane stress) 

Also, expression (6.2.17) is now of the form 

'a o 
x 

;.a 
xy 

;.a 
y 

cra 
z 

y <4» d 

(D.S) 

(D.9) 

(D.lO) 

(D.ll) 

where it should be noted that 0z is computed by the following relation 

J ( a a) 1 : ax + a y + ax + ay 
(plane strain) 

(D .12) 

(plane stress) 
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satility, one of the most important tools used by engineers. 
However, there are at present so many different finite ele
ment systems that users often frod it difficult to appreciate 
the advantages or disadvantages of a system for a particular 
problem that they want to solve. 
This handbook contains descriptions of over 30 of the most 
well known fmite element systems available, plus some spe
cial systems. The capability and facilities of the systems are 
described and examples of their use are given. One impor
tant feature of the Handbook is the tables giving essential 
information on the elements provided in a system, the type 
of material models available, the computer system the pro
grams will run on, names and addresses of system providers, 
etc. The volume also provides information on pre- and post
processing packages. 
This work is an essential reference for engineers who need 
up-to-date information on finite element systems and who 
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puter Aided Engineering, CAE. 
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